Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 316(1): F204-F213, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403162

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD) paracrine signaling molecules in cyst fluid can induce proliferation and cystogenesis of neighboring renal epithelial cells. However, the identity of this cyst-inducing factor is still unknown. The aim of this study was to identify paracrine signaling proteins in cyst fluid using a 3D in vitro cystogenesis assay. We collected cyst fluid from 15 ADPKD patients who underwent kidney or liver resection (55 cysts from 13 nephrectomies, 5 cysts from 2 liver resections). For each sample, the ability to induce proliferation and cyst formation was tested using the cystogenesis assay (RPTEC/TERT1 cells in Matrigel with cyst fluid added for 14 days). Kidney cyst fluid induced proliferation and cyst growth of renal epithelial cells in a dose-dependent fashion. Liver cyst fluid also induced cystogenesis. Using size exclusion chromatography, 56 cyst fluid fractions were obtained of which only the fractions between 30 and 100 kDa showed cystogenic potential. Mass spectrometry analysis of samples that tested positive or negative in the assay identified 43 candidate cystogenic proteins. Gene ontology analysis showed an enrichment for proteins classified as enzymes, immunity proteins, receptors, and signaling proteins. A number of these proteins have previously been implicated in ADPKD, including secreted frizzled-related protein 4, S100A8, osteopontin, and cysteine rich with EGF-like domains 1. In conclusion, both kidney and liver cyst fluids contain paracrine signaling molecules that drive cyst formation. Using size exclusion chromatography and mass spectrometry, we procured a candidate list for future studies. Ultimately, cystogenic paracrine signaling molecules may be targeted to abrogate cystogenesis in ADPKD.


Assuntos
Proliferação de Células , Líquido Cístico/metabolismo , Cistos/metabolismo , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Hepatopatias/metabolismo , Comunicação Parácrina , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Adulto , Idoso , Linhagem Celular , Cromatografia em Gel , Cistos/patologia , Células Epiteliais/patologia , Feminino , Humanos , Túbulos Renais Proximais/patologia , Hepatopatias/patologia , Masculino , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/patologia , Proteômica/métodos , Espectrometria de Massas em Tandem
2.
Stem Cells Transl Med ; 9(4): 478-490, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32163234

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient-specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore, iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole-genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney-specific DNA methylation memory. In addition, comparison of PKD1+/- and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular.


Assuntos
Células Epiteliais/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Rim/patologia , Rim Policístico Autossômico Dominante/patologia , Linhagem Celular , Reprogramação Celular , Metilação de DNA/genética , Análise Mutacional de DNA , Epigênese Genética , Humanos , Túbulos Renais/patologia , Mutação/genética , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA