Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioconjug Chem ; 29(10): 3273-3284, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30240193

RESUMO

Research over the past decade has identified several of the key limiting features of multidrug resistance (MDR) in cancer therapy applications, such as evolving glycoprotein receptors at the surface of the cell that limit therapeutic uptake, metabolic changes that lead to protection from multidrug resistant mediators which enhance degradation or efflux of therapeutics, and difficulty ensuring retention of intact and functional drugs once endocytosed. Nanoparticles have been demonstrated to be effective delivery vehicles for a plethora of therapeutic agents, and in the case of nucleic acid based agents, they provide protective advantages. Functionalizing cell penetrating peptides, also known as protein transduction domains, onto the surface of fluorescent quantum dots creates a labeled delivery package to investigate the nuances and difficulties of drug transport in MDR cancer cells for potential future clinical applications of diverse nanoparticle-based therapeutic delivery strategies. In this study, eight distinct cell penetrating peptides were used (CAAKA, HSV1-VP22, HIV-TAT, HIV-gp41, Ku-70, hCT(9-32), integrin-ß3, and K-FGF) to examine the different cellular uptake profiles in cancer versus drug resistant melanoma (A375 & A375-R), mesothelioma (MSTO & MSTO-R), and glioma (rat 9L and 9L-R, and human U87 & LN18) cell lines. The results of this study demonstrate that cell penetrating peptide uptake varies with drug resistance status and cell type, likely due to changes in cell surface markers. This study provides insight into developing functional nanoplatform delivery systems in drug resistant cancer models.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/química , Portadores de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Sequência de Aminoácidos , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Endocitose , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência , Pontos Quânticos , Ratos
2.
Nucleic Acids Res ; 37(19): 6587-99, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19729514

RESUMO

Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have been reported to trigger IFN activation. The consensus is that intracellularly expressed short-hairpin RNAs (shRNAs) are less prone to IFN activation because they are not detected by the cell-surface receptors. In particular, lentiviral vector-mediated transduction of shRNAs has been reported to avoid IFN response. Here we identify a shRNA that potently activates the IFN pathway in human cells in a sequence- and 5'-triphosphate-dependent manner. In addition to suppressing its intended mRNA target, expression of the shRNA results in dimerization of interferon regulatory factor-3, activation of IFN promoters and secretion of biologically active IFNs into the extracellular medium. Delivery by lentiviral vector transduction did not avoid IFN activation by this and another, unrelated shRNA. We also demonstrated that retinoic-acid-inducible gene I, and not melanoma differentiation associated gene 5 or toll-like receptor 3, is the cytoplasmic sensor for intracellularly expressed shRNAs that trigger IFN activation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Interferons/metabolismo , Lentivirus/genética , RNA não Traduzido/metabolismo , Linhagem Celular , Ciclofilinas/antagonistas & inibidores , Proteína DEAD-box 58 , Vetores Genéticos , Humanos , Regiões Promotoras Genéticas , Receptores Imunológicos , Transdução Genética
3.
J Virol ; 82(11): 5269-78, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18385230

RESUMO

Cyclosporine (CsA) and its derivatives potently suppress hepatitis C virus (HCV) replication. Recently, CsA-resistant HCV replicons have been identified in vitro. We examined the dependence of the wild-type and CsA-resistant replicons on various cyclophilins for replication. A strong correlation between CsA resistance and reduced dependency on cyclophilin A (CyPA) for replication was identified. Silencing of CyPB or CyPC expression had no significant effect on replication, whereas various forms of small interfering RNA (siRNA) directed at CyPA inhibited HCV replication of wild-type but not CsA-resistant replicons. The efficiency of a particular siRNA in suppressing CyPA expression was correlated with its potency in inhibiting HCV replication, and expression of an siRNA-resistant CyPA cDNA rescued replication. In addition, an anti-CyPA antibody blocked replication of the wild-type but not the resistant replicon in an in vitro replication assay. Depletion of CyPA alone in the CsA-resistant replicon cells eliminated CsA resistance, indicating that CyPA is the chief mediator of the observed CsA resistance. The dependency on CyPA for replication was observed for both genotype (GT) 1a and 1b replicons as well as a GT 2a infectious virus. An interaction between CyPA and HCV RNA as well as the viral polymerase that is sensitive to CsA treatment in wild-type but not in resistant replicons was detected. These findings reveal the molecular mechanism of CsA resistance and identify CyPA as a critical cellular cofactor for HCV replication and infection.


Assuntos
Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Sequência de Bases , Linhagem Celular , Ciclofilina A/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Viral da Expressão Gênica , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , Replicon/genética
4.
Cancer Biol Ther ; 19(3): 181-187, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29261027

RESUMO

Multidrug resistance (MDR) represents a major hindrance to the efficacy of cancer chemotherapeutics. While surgical resection, radiation, and chemotherapy can be used to reduce tumor size, the subsequent appearance of drug resistant cells is a frequent problem. One of the main contributors to the development of MDR is increased expression of multi-drug resistant protein 1 (MDR1), also known as P-glycoprotein (P-gp). P-gp is a membrane-associated efflux pump that can efficiently remove internalized taxane-base chemotherapeutics thus preventing drug accumulation and maintaining cellular viability. Consequently, investigation into the molecular mechanisms responsible for regulation of P-gp expression is necessary to facilitate treatment of MDR tumors. Using molecular and biochemical approaches, we identified that the micro-RNA, miRNA149, contributes to the development of MDR within malignant mesothelioma cells by regulating the expression of MDR1.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , MicroRNAs/metabolismo , Taxoides/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mesotelioma Maligno , Taxoides/uso terapêutico
5.
PLoS One ; 10(6): e0128511, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029917

RESUMO

Human mesenchymal stem cell (hMSC) resistance to the apoptotic effects of chemotherapeutic drugs has been of major interest, as these cells can confer this resistance to tumor microenvironments. However, the effects of internalized chemotherapeutics upon hMSCs remain largely unexplored. In this study, cellular viability and proliferation assays, combined with different biochemical approaches, were used to investigate the effects of Paclitaxel exposure upon hMSCs. Our results indicate that hMSCs are highly resistant to the cytotoxic effects of Paclitaxel treatment, even though there was no detectable expression of the efflux pump P-glycoprotein, the usual means by which a cell resists Paclitaxel treatment. Moreover, Paclitaxel treatment induces hMSCs to adopt a non-proliferative fibroblastic state, as evidenced by changes to morphology, cellular markers, and a reduction in differentiation potential that is not directly coupled to the cytoskeletal effects of Paclitaxel. Taken together, our results show that Paclitaxel treatment does not induce apoptosis in hMSCs, but does induce quiescence and phenotypic changes.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Antineoplásicos Fitogênicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Paclitaxel/metabolismo , Ligação Proteica
6.
J Med Chem ; 54(24): 8501-16, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22050291

RESUMO

We describe a family of hybrid compounds for the most efficient light-activated double-strand (ds) DNA cleavage known to date. This family represents the second generation of "switchable" molecular systems for pH-gated ds DNA-cleavage which combine a potent DNA-photocleaver and a pH-regulated part derived from a dipeptide. Design of the pH-switchable part utilizes amino groups of different basicity. Whereas the basic amino groups are protonated throughout the biologically relevant pH range, the pH-gating amines undergo protonation at the pH threshold which separates cancer and normal cells. Control over the reactivity and selectivity is achieved via transformation of the initial protonation state (a monocation or a dication) into a trication at the acidic pH. This change leads to an extraordinary increase in the efficiency of ds DNA cleavage leading to the ds:ss ratios comparable with the most efficient nonenzymatic ds DNA cleavers. Statistical analysis reveals that these high ds:ss ratios result from the combination of several factors: (a) true double-stranded cleavage, and (b) conversion of single-stranded (ss)-scission into ds cleavage. Considerable part of ds cleavage is also produced via the combination of ss cleavage events.


Assuntos
Alcinos/síntese química , Clivagem do DNA/efeitos da radiação , DNA Super-Helicoidal/efeitos da radiação , Dipeptídeos/síntese química , Luz , Neoplasias/genética , Alcinos/química , Alcinos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , DNA de Cadeia Simples/efeitos da radiação , Dipeptídeos/química , Dipeptídeos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/patologia , Estereoisomerismo , Relação Estrutura-Atividade
7.
Exp Cell Res ; 313(17): 3743-54, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17822697

RESUMO

RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role.


Assuntos
Nucléolo Celular/enzimologia , Hepacivirus/fisiologia , RNA Helicases/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Diclororribofuranosilbenzimidazol/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Sinais de Localização Nuclear/análise , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Helicases/antagonistas & inibidores , RNA Helicases/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA