Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ophthalmology ; 128(11): 1604-1617, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717343

RESUMO

PURPOSE: To develop a genotype assay to assess associations with common and rare age-related macular degeneration (AMD) risk variants, to calculate an overall genetic risk score (GRS), and to identify potential misdiagnoses with inherited macular dystrophies that mimic AMD. DESIGN: Case-control study. PARTICIPANTS: Individuals (n = 4740) from 5 European cohorts. METHODS: We designed single-molecule molecular inversion probes for target selection and used next generation sequencing to sequence 87 single nucleotide polymorphisms (SNPs), coding and splice-site regions of 10 AMD-(related) genes (ARMS2, C3, C9, CD46, CFB, CFH, CFI, HTRA1, TIMP3, and SLC16A8), and 3 genes that cause inherited macular dystrophies (ABCA4, CTNNA1, and PRPH2). Genetic risk scores for common AMD risk variants were calculated based on effect size and genotype of 52 AMD-associated variants. Frequency of rare variants was compared between late AMD patients and control individuals with logistic regression analysis. MAIN OUTCOME MEASURES: Genetic risk score, association of genetic variants with AMD, and genotype-phenotype correlations. RESULTS: We observed high concordance rates between our platform and other genotyping platforms for the 69 successfully genotyped SNPs (>96%) and for the rare variants (>99%). We observed a higher GRS for patients with late AMD compared with patients with early/intermediate AMD (P < 0.001) and individuals without AMD (P < 0.001). A higher proportion of pathogenic variants in the CFH (odds ratio [OR] = 2.88; P = 0.006), CFI (OR = 4.45; P = 0.005), and C3 (OR = 6.56; P = 0.0003) genes was observed in late AMD patients compared with control individuals. In 9 patients, we identified pathogenic variants in the PRPH2, ABCA4, and CTNNA1 genes, which allowed reclassification of these patients as having inherited macular dystrophy. CONCLUSIONS: This study reports a genotype assay for common and rare AMD genetic variants, which can identify individuals at intermediate to high genetic risk of late AMD and enables differential diagnosis of AMD-mimicking dystrophies. Our study supports sequencing of CFH, CFI, and C3 genes because they harbor rare high-risk variants. Carriers of these variants could be amendable for new treatments for AMD that currently are under development.


Assuntos
DNA/genética , Proteínas do Olho/genética , Predisposição Genética para Doença , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Proteínas do Olho/metabolismo , Genótipo , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco
2.
Ophthalmologica ; 243(6): 444-452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32172233

RESUMO

INTRODUCTION: We present a prediction model for progression from early/intermediate to advanced age-related macular degeneration (AMD) within 5.9 years. OBJECTIVES: To evaluate the combined role of genetic, nongenetic, and phenotypic risk factors for conversion from early to late AMD over ≥5 years. METHODS: Baseline phenotypic characteristics were evaluated based on color fundus photography, spectral-domain optical coherence tomography, and infrared images. Genotyping for 36 single-nucleotide polymorphisms as well as systemic lipid and complement measurements were performed. Multivariable backward logistic regression resulted in a final prediction model. RESULTS AND CONCLUSIONS: During a mean of 5.9 years of follow-up, 22.4% (n = 52) of the patients (n = 232) showed progression to late AMD. The multivariable prediction model included age, CFH variant rs1061170, pigment abnormalities, drusenoid pigment epithelial detachment (DPED), and hyperreflective foci (HRF). The model showed an area under the curve of 0.969 (95% confidence interval 0.948-0.990) and adequate calibration (Hosmer-Lemeshow test, p = 0.797). In addition to advanced age and carrying a CFH variant, pigment abnormalities, DPED, and HRF are relevant imaging biomarkers for conversion to late AMD. In clinical routine, an intensified monitoring of patients with a high-risk phenotypic profile may be suitable for the early detection of conversion to late AMD.


Assuntos
Degeneração Macular , Descolamento Retiniano , Drusas Retinianas , Angiofluoresceinografia , Humanos , Degeneração Macular/diagnóstico por imagem , Tomografia de Coerência Óptica
3.
Ophthalmology ; 126(3): 393-406, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30315903

RESUMO

PURPOSE: Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. DESIGN: Pooled analysis of cross-sectional data. PARTICIPANTS: Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. METHODS: AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. MAIN OUTCOME MEASURES: AMD features and stage; lipid measurements. RESULTS: HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14-1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91-0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10-1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 × 10-7), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 × 10-6 and P = 1.6 × 10-4). CONCLUSIONS: Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered.


Assuntos
HDL-Colesterol/sangue , Degeneração Macular/sangue , Idoso , Idoso de 80 Anos ou mais , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , LDL-Colesterol/sangue , Estudos Transversais , União Europeia , Feminino , Humanos , Metabolismo dos Lipídeos , Degeneração Macular/epidemiologia , Degeneração Macular/genética , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Pessoa de Meia-Idade , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Triglicerídeos/sangue , População Branca/estatística & dados numéricos
4.
Mol Vis ; 24: 75-82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29410599

RESUMO

Purpose: A recent genome-wide association study by the International Age-related Macular Degeneration Genomics Consortium (IAMDGC) identified seven rare variants that are individually associated with age-related macular degeneration (AMD), the most common cause of vision loss in the elderly. In literature, several of these rare variants have been reported with different frequencies and odds ratios across populations of Europe and North America. Here, we aim to describe the representation of these seven AMD-associated rare variants in different geographic regions based on 24 AMD studies. Methods: We explored the occurrence of seven rare variants independently associated with AMD (CFH rs121913059 (p.Arg1210Cys), CFI rs141853578 (p.Gly119Arg), C3 rs147859257 (p.Lys155Gln), and C9 rs34882957 (p.Pro167Ser)) and three non-coding variants in or near the CFH gene (rs148553336, rs35292876, and rs191281603) in 24 AMD case-control studies. We studied the difference in distribution, interaction, and effect size for each of the rare variants based on the minor allele frequency within the different geographic regions. Results: We demonstrate that two rare AMD-associated variants in the CFH gene (rs121913059 [p.Arg1210Cys] and rs35292876) deviate in frequency among different geographic regions (p=0.004 and p=0.001, respectively). The risk estimates of each of the seven rare variants were comparable across the geographic regions. Conclusions: The results emphasize the importance of identifying population-specific rare variants, for example, by performing sequencing studies in case-control studies of various populations, because their identification may have implications for diagnostic screening and personalized treatment.


Assuntos
Fator H do Complemento/genética , Predisposição Genética para Doença , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Idoso , Alelos , Estudos de Casos e Controles , Complemento C3/genética , Complemento C3/imunologia , Complemento C9/genética , Complemento C9/imunologia , Fator H do Complemento/imunologia , Fator I do Complemento/genética , Fator I do Complemento/imunologia , Europa (Continente) , Feminino , Expressão Gênica , Frequência do Gene , Estudo de Associação Genômica Ampla , Geografia , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/imunologia , Degeneração Macular/patologia , Masculino
5.
Ophthalmology ; 125(9): 1433-1443, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29706360

RESUMO

PURPOSE: Genome-wide association studies and targeted sequencing studies of candidate genes have identified common and rare variants that are associated with age-related macular degeneration (AMD). Whole-exome sequencing (WES) studies allow a more comprehensive analysis of rare coding variants across all genes of the genome and will contribute to a better understanding of the underlying disease mechanisms. To date, the number of WES studies in AMD case-control cohorts remains scarce and sample sizes are limited. To scrutinize the role of rare protein-altering variants in AMD cause, we performed the largest WES study in AMD to date in a large European cohort consisting of 1125 AMD patients and 1361 control participants. DESIGN: Genome-wide case-control association study of WES data. PARTICIPANTS: One thousand one hundred twenty-five AMD patients and 1361 control participants. METHODS: A single variant association test of WES data was performed to detect variants that are associated individually with AMD. The cumulative effect of multiple rare variants with 1 gene was analyzed using a gene-based CMC burden test. Immunohistochemistry was performed to determine the localization of the Col8a1 protein in mouse eyes. MAIN OUTCOME MEASURES: Genetic variants associated with AMD. RESULTS: We detected significantly more rare protein-altering variants in the COL8A1 gene in patients (22/2250 alleles [1.0%]) than in control participants (11/2722 alleles [0.4%]; P = 7.07×10-5). The association of rare variants in the COL8A1 gene is independent of the common intergenic variant (rs140647181) near the COL8A1 gene previously associated with AMD. We demonstrated that the Col8a1 protein localizes at Bruch's membrane. CONCLUSIONS: This study supported a role for protein-altering variants in the COL8A1 gene in AMD pathogenesis. We demonstrated the presence of Col8a1 in Bruch's membrane, further supporting the role of COL8A1 variants in AMD pathogenesis. Protein-altering variants in COL8A1 may alter the integrity of Bruch's membrane, contributing to the accumulation of drusen and the development of AMD.


Assuntos
Lâmina Basilar da Corioide/metabolismo , Colágeno Tipo VIII/genética , DNA/genética , Estudo de Associação Genômica Ampla/métodos , Degeneração Macular/genética , Retina/patologia , Idoso , Animais , Lâmina Basilar da Corioide/patologia , Colágeno Tipo VIII/metabolismo , Feminino , Testes Genéticos , Humanos , Imuno-Histoquímica , Degeneração Macular/diagnóstico , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Sequenciamento do Exoma
6.
Clin Genet ; 94(6): 569-574, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30215852

RESUMO

It can be clinically challenging to distinguish dry age-related macular degeneration (AMD) from AMD-mimicking dystrophies, and sometimes misdiagnosis occurs. With upcoming therapies for dry AMD it is important to exclude patients with a different retinal disease from clinical trials. In this study we evaluated the occurrence of AMD-mimicking dystrophies in an AMD cohort. Whole-exome sequencing (WES) was performed in 218 patients with intermediate AMD or geographic atrophy secondary to AMD and 133 control individuals. WES data was analyzed for rare variants in 19 genes associated with autosomal dominant and recessive macular dystrophies mimicking AMD. In three (1.4%) of 218 cases we identified a pathogenic heterozygous variant (PRPH2 c.424C > T; p.R142W) causal for autosomal dominant central areolar choroidal dystrophy (CACD). Phenotypically, these patients all presented with geographic atrophy. In 12 (5.5%) of 218 cases we identified a heterozygous variant of unknown clinical significance, but predicted to be highly deleterious, in genes previously associated with autosomal dominant macular dystrophies. The distinction between AMD and AMD-mimicking dystrophies, such as CACD, can be challenging based on fundus examination alone. Genetic screening for genes associated with macular dystrophies, especially PRPH2, can be beneficial to help identify AMD-mimicking dystrophies.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Fenótipo , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Estudos de Casos e Controles , Feminino , Genes Dominantes , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Atrofia Geográfica/diagnóstico , Atrofia Geográfica/genética , Humanos , Masculino , Sequenciamento do Exoma
7.
J Pers Med ; 11(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34945728

RESUMO

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. The complement system has been identified as one of the main AMD disease pathways. We performed a comprehensive expression analysis of 32 complement proteins in plasma samples of 255 AMD patients and 221 control individuals using mass spectrometry-based semi-quantitative multiplex profiling. We detected significant associations of complement protein levels with age, sex and body-mass index (BMI), and potential associations of C-reactive protein, factor H related-2 (FHR-2) and collectin-11 with AMD. In addition, we confirmed previously described associations and identified new associations of AMD variants with complement levels. New associations include increased C4 levels for rs181705462 at the C2/CFB locus, decreased vitronectin (VTN) levels for rs11080055 at the TMEM97/VTN locus and decreased factor I levels for rs10033900 at the CFI locus. Finally, we detected significant associations between AMD-associated metabolites and complement proteins in plasma. The most significant complement-metabolite associations included increased high density lipoprotein (HDL) subparticle levels with decreased C3, factor H (FH) and VTN levels. The results of our study indicate that demographic factors, genetic variants and circulating metabolites are associated with complement protein components. We suggest that these factors should be considered to design personalized treatment approaches and to increase the success of clinical trials targeting the complement system.

8.
PLoS One ; 14(6): e0218457, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220133

RESUMO

Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology.


Assuntos
Biomarcadores/sangue , Glutamina/metabolismo , Degeneração Macular/sangue , Metabolômica , Idoso , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Degeneração Macular/genética , Degeneração Macular/patologia , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade
9.
Invest Ophthalmol Vis Sci ; 60(4): 1192-1203, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913292

RESUMO

Purpose: To describe the clinical and genetic spectrum of RP1-associated retinal dystrophies. Methods: In this multicenter case series, we included 22 patients with RP1-associated retinal dystrophies from 19 families from The Netherlands and Japan. Data on clinical characteristics, visual acuity, visual field, ERG, and retinal imaging were extracted from medical records over a mean follow-up of 8.1 years. Results: Eleven patients were diagnosed with autosomal recessive macular dystrophy (arMD) or autosomal recessive cone-rod dystrophy (arCRD), five with autosomal recessive retinitis pigmentosa (arRP), and six with autosomal dominant RP (adRP). The mean age of onset was 40.3 years (range 14-56) in the patients with arMD/arCRD, 26.2 years (range 18-40) in adRP, and 8.8 years (range 5-12) in arRP patients. All patients with arMD/arCRD carried either the hypomorphic p.Arg1933* variant positioned close to the C-terminus (8 of 11 patients) or a missense variant in exon 2 (3 of 11 patients), compound heterozygous with a likely deleterious frameshift or nonsense mutation, or the p.Gln1916* variant. In contrast, all mutations identified in adRP and arRP patients were frameshift and/or nonsense variants located far from the C-terminus. Conclusions: Mutations in the RP1 gene are associated with a broad spectrum of progressive retinal dystrophies. In addition to adRP and arRP, our study provides further evidence that arCRD and arMD are RP1-associated phenotypes as well. The macular involvement in patients with the hypomorphic RP1 variant suggests that macular function may remain compromised if expression levels of RP1 do not reach adequate levels after gene augmentation therapy.


Assuntos
Códon sem Sentido , Distrofias de Cones e Bastonetes/genética , Proteínas do Olho/genética , Mutação da Fase de Leitura , Degeneração Macular/genética , Retinose Pigmentar/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/fisiopatologia , Análise Mutacional de DNA , Eletrorretinografia , Éxons , Feminino , Humanos , Degeneração Macular/diagnóstico , Degeneração Macular/fisiopatologia , Masculino , Proteínas Associadas aos Microtúbulos , Pessoa de Meia-Idade , Linhagem , Fenótipo , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Acuidade Visual/fisiologia , Campos Visuais/fisiologia , Adulto Jovem
10.
Surv Ophthalmol ; 63(1): 9-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28522341

RESUMO

Biomarkers can help unravel mechanisms of disease and identify new targets for therapy. They can also be useful in clinical practice for monitoring disease progression, evaluation of treatment efficacy, and risk assessment in multifactorial diseases, such as age-related macular degeneration (AMD). AMD is a highly prevalent progressive retinal disorder for which multiple genetic and environmental risk factors have been described, but the exact etiology is not yet fully understood. Many compounds have been evaluated for their association with AMD. We performed an extensive literature review of all compounds measured in serum, plasma, vitreous, aqueous humor, and urine of AMD patients. Over 3600 articles were screened, resulting in more than 100 different compounds analyzed in AMD studies, involved in neovascularization, immunity, lipid metabolism, extracellular matrix, oxidative stress, diet, hormones, and comorbidities (such as kidney disease). For each compound, we provide a short description of its function and discuss the results of the studies in relation to its usefulness as AMD biomarker. In addition, biomarkers identified by hypothesis-free techniques, including metabolomics, proteomics, and epigenomics, are covered. In summary, compounds belonging to the oxidative stress pathway, the complement system, and lipid metabolism are the most promising biomarker candidates for AMD. We hope that this comprehensive survey of the literature on systemic and ocular fluid compounds as potential biomarkers in AMD will provide a stepping stone for future research and possible implementation in clinical practice.


Assuntos
Biomarcadores/metabolismo , Degeneração Macular/metabolismo , Proteínas do Sistema Complemento/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Neovascularização Retiniana/metabolismo
11.
Prog Retin Eye Res ; 67: 56-86, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29729972

RESUMO

There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Degeneração Macular/metabolismo , Transporte Biológico/genética , Colesterol/metabolismo , Dieta , Ácidos Graxos Ômega-3/fisiologia , Humanos , Lipoproteínas HDL/metabolismo
12.
JAMA Ophthalmol ; 135(10): 1037-1044, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859202

RESUMO

Importance: Rare variants in the complement factor H (CFH) gene and their association with age-related macular degeneration (AMD) have been described. However, there is limited literature on the phenotypes accompanying these rare variants. Phenotypical characteristics could help ophthalmologists select patients for additional genetic testing. Objective: To describe the phenotypical characteristics of patients with AMD carrying a rare variant in the CFH gene. Design, Setting, and Participants: In this cross-sectional study, we searched the genetic database of the department of ophthalmology at the Radboudumc (tertiary ophthalmologic referral center) and the European Genetic Database for patients with AMD with a rare genetic variant in the CFH gene. Patient recruitment took place from March 30, 2006, to February 18, 2013, and data were analyzed from November 30, 2015, to May 8, 2017. Phenotypical features on fundus photographs of both eyes of patients were graded by 2 independent reading center graders masked for carrier status. Main Outcomes and Measures: Differences in phenotypical characteristics between rare variant carriers and noncarriers were analyzed using univariable generalized estimated equations logistic regression models accounting for intereye correlation. Results: Analyses included 100 eyes of 51 patients with AMD carrying a CFH variant (mean [SD] age, 66.7 [12.1] years; 64.7% female) and 204 eyes of 102 age-matched noncarriers (mean [SD] age, 67.1 [11.8] years; 54.9% female). Carrying a rare pathogenic CFH variant was associated with larger drusen area (odds ratio range, 6.98 [95% CI, 2.04-23.89] to 18.50 [95% CI, 2.19-155.99]; P = .002), presence of drusen with crystalline appearance (odds ratio, 3.24; 95% CI, 1.24-8.50; P = .02), and drusen nasal to the optic disc (odds ratio range, 4.03 [95% CI, 1.70-9.56] to 7.42 [95% CI, 0.65-84.84]; P = .003). Conclusions and Relevance: Identification of rare CFH variant carriers may be important for upcoming complement-inhibiting therapies. Patients with an extensive drusen area, drusen with crystalline appearance, and drusen nasal to the optic disc are more likely to have a rare variant in the CFH gene. However, it is not likely that carriers can be discriminated from noncarriers based solely on phenotypical characteristics from color fundus images. Therefore, ophthalmologists should consider genetic testing in patients with these phenotypic characteristics in combination with other patient characteristics, such as early onset, cuticular drusen on fluorescein angiography, and family history of AMD.


Assuntos
Degeneração Macular/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Drusas Retinianas/genética , Adulto , Idoso , Fator H do Complemento/genética , Estudos Transversais , Bases de Dados Factuais , Feminino , Angiofluoresceinografia , Testes Genéticos , Técnicas de Genotipagem , Humanos , Degeneração Macular/diagnóstico , Masculino , Pessoa de Meia-Idade , Drusas Retinianas/patologia , Estudos Retrospectivos
13.
Invest Ophthalmol Vis Sci ; 58(2): 1001-1007, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28288486

RESUMO

Purpose: To compare the disease course of retinal pigment epithelium (RPE) atrophy secondary to age-related macula degeneratio (AMD) and late-onset Stargardt disease (STGD1). Methods: Patients were examined longitudinally by fundus autofluorescence, near-infrared reflectance imaging, and best-corrected visual acuity (BCVA). Areas of RPE atrophy were quantified using semi-automated software, and the status of the fovea was evaluated based on autofluorescence and near-infrared reflectance images. Mixed-effects models were used to compare atrophy progression rates. BCVA loss and loss of foveal integrity were analyzed using Turnbull's estimator. Results: A total of 151 patients (226 eyes) with RPE atrophy secondary to AMD and 38 patients (66 eyes) with RPE atrophy secondary to late-onset STGD1 were examined for a median time of 2.3 years (interquartile range, 2.7). Mean baseline age was 74.2 years (SD, 7.6) in AMD and 63.4 (SD, 9.9) in late-onset STGD1 (P = 1.1 × 10-7). Square root atrophy progression was significantly faster in AMD when compared with late-onset STGD1 (0.28 mm/year [SE, 0.01] vs. 0.23 [SE, 0.03]; P = 0.030). In late-onset STGD1, the median survival of the fovea was significantly longer when compared with eyes with AMD (8.60 vs. 3.35 years; P = 0.005) with a trend to a later BCVA loss of ≥3 lines (5.97 vs. 4.37 years; P = 0.382). Conclusions: These natural history data indicate differential disease progression in AMD versus late-onset STGD1. The results underline the relevance of refined phenotyping in elderly patients presenting with RPE atrophy in regard to prognosis and design of interventional trials.


Assuntos
Angiofluoresceinografia/métodos , Macula Lutea/patologia , Degeneração Macular/congênito , Degeneração Macular/diagnóstico , Epitélio Pigmentado da Retina/patologia , Acuidade Visual , Idoso , Progressão da Doença , Eletrorretinografia , Feminino , Seguimentos , Fundo de Olho , Humanos , Macula Lutea/fisiopatologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Doença de Stargardt , Tomografia de Coerência Óptica
14.
Invest Ophthalmol Vis Sci ; 55(11): 7085-92, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25301878

RESUMO

PURPOSE: We describe the differences and similarities in clinical characteristics and phenotype of familial and sporadic patients with age-related macular degeneration (AMD). METHODS: We evaluated data of 1828 AMD patients and 1715 controls enrolled in the European Genetic Database. All subjects underwent ophthalmologic examination, including visual acuity testing and fundus photography. Images were graded and fundus photographs were used for automatic drusen quantification by a machine learning algorithm. Data on disease characteristics, family history, medical history, and lifestyle habits were obtained by a questionnaire. RESULTS: The age at first symptoms was significantly lower in AMD patients with a positive family history (68.5 years) than in those with no family history (71.6 years, P = 1.9 × 10(-5)). Risk factors identified in sporadic and familial subjects were increasing age (odds ratio [OR], 1.08 per year; P = 3.0 × 10(-51), and OR, 1.15; P = 5.3 × 10(-36), respectively) and smoking (OR, 1.01 per pack year; P = 1.1 × 10(-6) and OR, 1.02; P = 0.005). Physical activity and daily red meat consumption were significantly associated with AMD in sporadic subjects only (OR, 0.49; P = 3.7 × 10(-10) and OR, 1.81; P = 0.001). With regard to the phenotype, geographic atrophy and cuticular drusen were significantly more prevalent in familial AMD (17.5% and 21.7%, respectively) compared to sporadic AMD (9.8% and 12.1%). CONCLUSIONS: Familial AMD patients become symptomatic at a younger age. The higher prevalence of geographic atrophy and cuticular drusen in the familial AMD cases may be explained by the contribution of additional genetic factors segregating within families.


Assuntos
Macula Lutea/patologia , Degeneração Macular/diagnóstico , Medição de Risco/métodos , Distribuição por Idade , Idoso , Progressão da Doença , Feminino , Humanos , Degeneração Macular/epidemiologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Razão de Chances , Prevalência , Fatores de Risco , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA