Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem Lett ; 27(16): 3647-3652, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28720505

RESUMO

Bispecific antibodies (BsAbs) are designed to engage two antigens simultaneously, thus, effectively expanding the ability of antibody-based therapeutics to target multiple pathways within the same cell, engage two separate soluble antigens, bind the same antigen with distinct paratopes, or crosslink two different cell types. Many recombinant BsAb formats have emerged, however, expression and purification of such constructs can often be challenging. To this end, we have developed a chemical strategy for generating BsAbs using native IgG2 architecture. Full-length antibodies can be conjugated via disulfide bridging with linkers bearing orthogonal groups to produce BsAbs. We report that an αHER2/EGFR BsAb was successfully generated by this approach and retained the ability to bind both antigens with no significant loss of potency.


Assuntos
Anticorpos Biespecíficos/química , Dissulfetos/química , Imunoglobulina G/imunologia , Anticorpos Biespecíficos/imunologia , Reações Antígeno-Anticorpo , Sítios de Ligação de Anticorpos , Linhagem Celular Tumoral , Química Click , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Microscopia de Fluorescência , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo
2.
Bioorg Med Chem Lett ; 27(24): 5490-5495, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29126850

RESUMO

Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity.


Assuntos
Anticorpos Biespecíficos/química , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Fragmentos Fab das Imunoglobulinas/química , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Complexo CD3/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Química Click , Dissulfetos/química , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Leucócitos Mononucleares/citologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
3.
Med ; 5(1): 42-61.e23, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181791

RESUMO

BACKGROUND: Oral antiviral drugs with improved antiviral potency and safety are needed to address current challenges in clinical practice for treatment of COVID-19, including the risks of rebound, drug-drug interactions, and emerging resistance. METHODS: Olgotrelvir (STI-1558) is designed as a next-generation antiviral targeting the SARS-CoV-2 main protease (Mpro), an essential enzyme for SARS-CoV-2 replication, and human cathepsin L (CTSL), a key enzyme for SARS-CoV-2 entry into host cells. FINDINGS: Olgotrelvir is a highly bioavailable oral prodrug that is converted in plasma to its active form, AC1115. The dual mechanism of action of olgotrelvir and AC1115 was confirmed by enzyme activity inhibition assays and co-crystal structures of AC1115 with SARS-CoV-2 Mpro and human CTSL. AC1115 displayed antiviral activity by inhibiting replication of all tested SARS-CoV-2 variants in cell culture systems. Olgotrelvir also inhibited viral entry into cells using SARS-CoV-2 Spike-mediated pseudotypes by inhibition of host CTSL. In the K18-hACE2 transgenic mouse model of SARS-CoV-2-mediated disease, olgotrelvir significantly reduced the virus load in the lungs, prevented body weight loss, and reduced cytokine release and lung pathologies. Olgotrelvir demonstrated potent activity against the nirmatrelvir-resistant Mpro E166 mutants. Olgotrelvir showed enhanced oral bioavailability in animal models and in humans with significant plasma exposure without ritonavir. In phase I studies (ClinicalTrials.gov: NCT05364840 and NCT05523739), olgotrelvir demonstrated a favorable safety profile and antiviral activity. CONCLUSIONS: Olgotrelvir is an oral inhibitor targeting Mpro and CTSL with high antiviral activity and plasma exposure and is a standalone treatment candidate for COVID-19. FUNDING: Funded by Sorrento Therapeutics.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Inibidores de Protease de Coronavírus , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Catepsina L/antagonistas & inibidores , COVID-19/prevenção & controle , Modelos Animais de Doenças , Camundongos Transgênicos , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Tratamento Farmacológico da COVID-19/métodos
4.
Expert Opin Biol Ther ; 23(11): 1137-1149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078403

RESUMO

BACKGROUND: Solid tumors are becoming prevalent affecting both old and young populations. Numerous solid tumors are associated with high cMET expression. The complexity of solid tumors combined with the highly interconnected nature of the cMET/HGF pathway with other cellular pathways make the pursuit of finding an effective treatment extremely challenging. The current standard of care for these malignancies is mostly small molecule-based chemotherapy. Antibody-based therapeutics as well as antibody drug conjugates are promising emerging classes against cMET-overexpressing solid tumors. RESEARCH DESIGN AND METHODS: In this study, we described the design, synthesis, in vitro and in vivo characterization of cMET-targeting Fab drug conjugates (FDCs) as an alternative therapeutic strategy. The format is comprised of a Fab conjugated to a potent cytotoxic drug via a cleavable linker employing lysine-based and cysteine-based conjugation chemistries. RESULTS: We found that the FDCs have potent anti-tumor efficacies in cancer cells with elevated overexpression of cMET. Moreover, they demonstrated a remarkable anti-tumor effect in a human gastric xenograft mouse model. CONCLUSIONS: The FDC format has the potential to overcome some of the challenges presented by the other classes of therapeutics. This study highlights the promise of antibody fragment-based drug conjugate formats for the treatment of solid tumors.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Animais , Camundongos , Imunoconjugados/uso terapêutico , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Anticorpos , Linhagem Celular Tumoral
5.
Front Oncol ; 12: 884196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664753

RESUMO

Therapeutic blockade of the CD47/SIRPα axis by small molecules or monoclonal antibodies (mAbs) is a proven strategy to enhance macrophages-mediated anti-tumor activity. However, this strategy has been hampered by elevated on-target toxicities and rapid clearance due to the extensive CD47 expression on normal cells ("antigen sink") such as red blood cells (RBCs). To address these hurdles, we report on the development of STI-6643, an affinity-engineered fully human anti-CD47 IgG4 antibody with negligible binding to normal cells. STI-6643 exhibited no hemagglutination activity on human RBCs at concentrations up to 300 µg/mL yet specifically blocked the CD47/SIPRα interaction. Of particular interest, STI-6643 preserved T cell functionality in vitro and showed significantly lower immune cell depletion in vivo in contrast to three previously published competitor reference anti-CD47 clones Hu5F9, AO-176 and 13H3. In cynomolgus monkeys, STI-6643 was well-tolerated at the highest dose tested (300 mg/kg/week) and provided favorable clinical safety margins. Finally, STI-6643 displayed comparable anti-tumor activity to the high-affinity reference clone Hu5F9 in a RAJI-Fluc xenograft tumor model as monotherapy or in combination with anti-CD20 (rituximab) or anti-CD38 (daratumumab) mAbs. These data suggest that STI-6643 possesses the characteristics of an effective therapeutic candidate given its potent anti-tumor activity and low toxicity profile.

6.
Sci Rep ; 12(1): 15517, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109550

RESUMO

Coronavirus disease 2019 (COVID-19) continues to significantly impact the global population, thus countermeasure platforms that enable rapid development of therapeutics against variants of SARS-CoV-2 are essential. We report use of a phage display human antibody library approach to rapidly identify neutralizing antibodies (nAbs) against SARS-CoV-2. We demonstrate the binding and neutralization capability of two nAbs, STI-2020 and STI-5041, against the SARS-CoV-2 WA-1 strain as well as the Alpha and Beta variants. STI-2020 and STI-5041 were protective when administered intravenously or intranasally in the golden (Syrian) hamster model of COVID-19 challenged with the WA-1 strain or Beta variant. The ability to administer nAbs intravenously and intranasally may have important therapeutic implications and Phase 1 healthy subjects clinical trials are ongoing.


Assuntos
COVID-19 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Cricetinae , Humanos , Mesocricetus , Testes de Neutralização , SARS-CoV-2
7.
Med ; 3(10): 705-721.e11, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044897

RESUMO

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Assuntos
Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , Administração Intranasal , Animais , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Humanos , Imunoglobulina G , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral
8.
Antiviral Res ; 195: 105185, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634289

RESUMO

Monoclonal antibodies (mAbs) are emerging as safe and effective therapeutics against SARS-CoV-2. However, variant strains of SARS-CoV-2 have evolved, with early studies showing that some mAbs may not sustain their efficacy in the face of escape mutants. Also, from the onset of the COVID-19 pandemic, concern has been raised about the potential for Fcγ receptor-mediated antibody-dependent enhancement (ADE) of infection. In this study, plaque reduction neutralization assays demonstrated that mAb 1741-LALA neutralizes SARS-CoV-2 strains B.1.351, D614 and D614G. MAbs S1D2-hIgG1 and S1D2-LALA mutant (STI-1499-LALA) did not neutralize B.1.351, but did neutralize SARS-CoV-2 strains D614 and D614G. LALA mutations did not result in substantial differences in neutralizing abilities between clones S1D2-hIgG1 vs STI-1499-LALA. S1D2-hIgG1, STI-1499-LALA, and convalescent plasma showed minimal ability to induce ADE in human blood monocyte-derived macrophages. Further, no differences in pharmacokinetic clearance of S1D2-hIgG1 vs STI-1499-LALA were observed in mice expressing human FcRn. These findings confirm that SARS-CoV-2 has already escaped some mAbs, and identify a mAb candidate that may neutralize multiple SARS-CoV-2 variants. They also suggest that risk of ADE in macrophages may be low with SARS-CoV-2 D614, and LALA Fc change impacts neither viral neutralization nor Ab clearance.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Facilitadores , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
10.
Immunol Lett ; 103(1): 33-8, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16386801

RESUMO

We have recently discovered a reaction that all antibodies, regardless of source or antigenic specificity can catalyze, that is the reaction between singlet dioxygen ((1)O(2)(*)) and H(2)O to generate H(2)O(2). We have named this process the antibody-catalyzed water oxidation pathway (ACWOP). As part of our ongoing investigations into the possible biological role of this pathway, we have studied whether isoalloxazine-containing cofactors, that are known to be endogenous photosensitizers via Type-II pathways to generate (1)O(2)(*), such as riboflavin (RF, Vitamin B2) can trigger the ACWOP. Herein we show that regardless of the antigenic specificity or heavy and light chain composition, all antibodies and their fragments are able to intercept the (1)O(2)(*) generated by photo-oxidation of RF in the presence of oxygen (ambient aerobic conditions) to activate the ACWOP. The initial rate of HOOH generation by a panel of murine antibodies ranges from 0.218 to 0.998 microM/min. The initial rate of antibody-catalyzed HOOH production is accelerated in D(2)O and is quenched in NaN(3), highlighting the key intermediacy of (1)O(2)(*) in the process. Critically, the ACWOP is photo-activated at physiologically relevant concentrations of RF (<50 nM) suggesting that this pathway may be relevant in an in vivo setting. Finally, when activated by RF the ACWOP generates oxidants that accelerate the hemolysis of sheep RBCs hinting at a pathophysiological effect of this RF-induced photo-oxidation pathway.


Assuntos
Anticorpos Catalíticos/química , Peróxido de Hidrogênio/síntese química , Imunoglobulina G/química , Riboflavina/química , Transdução de Sinais , Água/química , Animais , Anticorpos Catalíticos/metabolismo , Anticorpos Catalíticos/efeitos da radiação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/fisiologia , Peróxido de Hidrogênio/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Oxirredução/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/farmacologia , Água/metabolismo
11.
Biomacromolecules ; 3(2): 262-71, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11888310

RESUMO

A N,N-dimethylacrylamide-based hydrogel (2) with the new cross-linker (ethylenedioxy) bis[2,2'-(N-acryloylamino)ethane] (1) has been prepared, and its physicochemical properties in aqueous solution were studied. Three different native proteins (lysozyme, bovine serum albumin, and rabbit IgG) were encapsulated within the polymeric matrix 2, and the kinetics of their release from the swollen hydrogel were determined. The rate of protein release exhibits a clear dependence on both the molecular weight of the protein and the amount of cross-linker utilized to prepare the hydrogel. This is reflected by the fact that the low molecular weight proteins are released at an increased rate versus higher molecular weight proteins. In addition a greater amount of protein is released from the hydrogels with a lower percentage of cross-linker. The polymerization procedure used in this study is sufficiently mild to safeguard the functional integrity of attendant biomolecules as determined by the retention of catalytic activity of encapsulated alpha-chymotrypsin and aldolase catalytic antibody 38C2. The potential utility of these hydrogels for the controlled release of bioactive agents in vivo is strengthened by both their lack of toxicity against human dermal fibroblasts and their lack of immunogenicity in mice.


Assuntos
Composição de Medicamentos , Hidrogéis , Proteínas/química , Acrilamidas/química , Quimotripsina , Colorimetria , Reagentes de Ligações Cruzadas , Preparações de Ação Retardada , Fluorescência , Hidrogéis/química , Estrutura Molecular , Muramidase , Polímeros , Soroalbumina Bovina , Temperatura
12.
Hybrid Hybridomics ; 22(1): 23-31, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12713687

RESUMO

Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. Previous studies have demonstrated that targeting foreign antigens to DC leads to enhanced antigen (Ag)-specific responses in vivo. However, the utility of this strategy for the generation of MAbs has not been investigated. To address this question we immunized mice with IgG-peptide conjugates prepared with the hamster anti-murine CD11c MAb N418. Synthetic peptides corresponding to two different exposed regions of DC-specific ICAM-3 grabbing nonintegrin (DC-SIGN), a human C-type lectin, were conjugated to N418 using thiol-based chemistry. The N418 MAb served as the targeting molecule and synthetic peptides as the Ag (MAb-Ag). A rapid and peptide specific serum IgG response was produced by Day 7 when the synthetic peptides were linked to the N418 MAb, compared to peptide co-delivered with the N418 without linkage. Spleen cells from N418-peptide immunized mice were fused on Day 10, and three IgG1/k monoclonal antibodies (MAbs) were selected to one of the peptide epitopes (MID-peptide). One of the MAbs, Novik 2, bound to two forms of recombinant DC-SIGN protein in enzyme-linked immunosorbent assay (ELISA), and was specifically inhibited by the MID-peptide in solution. Two of these MAbs show specific binding to DC-SIGN expressed by cultured human primary DC. We conclude that in vivo DC targeting enhances the immunogenicity of synthetic peptides and is an effective method for the rapid generation of MAbs to predetermined epitopes.


Assuntos
Anticorpos Monoclonais/imunologia , Células Dendríticas/imunologia , Animais , Anticorpos Monoclonais/metabolismo , Antígeno CD11c/imunologia , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/imunologia , Citometria de Fluxo , Humanos , Lectinas Tipo C/análise , Lectinas Tipo C/imunologia , Camundongos , Peptídeos/metabolismo , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA