RESUMO
BACKGROUND AND AIMS: HCC is the most common primary liver tumor, with an increasing incidence worldwide. HCC is a heterogeneous malignancy and usually develops in a chronically injured liver. The NF-κB signaling network consists of a canonical and a noncanonical branch. Activation of canonical NF-κB in HCC is documented. However, a functional and clinically relevant role of noncanonical NF-κB and its downstream effectors is not established. APPROACH AND RESULTS: Four human HCC cohorts (total n = 1462) and 4 mouse HCC models were assessed for expression and localization of NF-κB signaling components and activating ligands. In vitro , NF-κB signaling, proliferation, and cell death were measured, proving a pro-proliferative role of v-rel avian reticuloendotheliosis viral oncogene homolog B (RELB) activated by means of NF-κB-inducing kinase. In vivo , lymphotoxin beta was identified as the predominant inducer of RELB activation. Importantly, hepatocyte-specific RELB knockout in a murine HCC model led to a lower incidence compared to controls and lower maximal tumor diameters. In silico , RELB activity and RELB-directed transcriptomics were validated on the The Cancer Genome Atlas HCC cohort using inferred protein activity and Gene Set Enrichment Analysis. In RELB-active HCC, pathways mediating proliferation were significantly activated. In contrast to v-rel avian reticuloendotheliosis viral oncogene homolog A, nuclear enrichment of noncanonical RELB expression identified patients with a poor prognosis in an etiology-independent manner. Moreover, RELB activation was associated with malignant features metastasis and recurrence. CONCLUSIONS: This study demonstrates a prognostically relevant, etiology-independent, and cross-species consistent activation of a lymphotoxin beta/LTßR/RELB axis in hepatocarcinogenesis. These observations may harbor broad implications for HCC, including possible clinical exploitation.
RESUMO
BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the intrahepatic (iCCA) or extrahepatic (eCCA) bile ducts with poor prognosis and limited treatment options. Prior evidence highlighted a significant contribution of the non-canonical NF-κB signalling pathway in initiation and aggressiveness of different tumour types. Lymphotoxin-ß (LTß) stimulates the NF-κB-inducing kinase (NIK), resulting in the activation of the transcription factor RelB. However, the functional contribution of the non-canonical NF-κB signalling pathway via the LTß/NIK/RelB axis in CCA carcinogenesis and progression has not been established. METHODS: Human CCA-derived cell lines and organoids were examined to determine the expression of NF-κB pathway components upon activation or inhibition. Proliferation and cell death were analysed using real-time impedance measurement and flow cytometry. Immunoblot, qRT-PCR, RNA sequencing and in situ hybridization were employed to analyse gene and protein expression. Four in vivo models of iCCA were used to probe the activation and regulation of the non-canonical NF-κB pathway. RESULTS: Exposure to LTα1/ß2 activates the LTß/NIK/RelB axis and promotes proliferation in CCA. Inhibition of NIK with the small molecule inhibitor B022 efficiently suppresses RelB expression in patient-derived CCA organoids and nuclear co-translocation of RelB and p52 stimulated by LTα1/ß2 in CCA cell lines. In murine CCA, RelB expression is significantly increased and LTß is the predominant ligand of the non-canonical NF-κB signalling pathway. CONCLUSIONS: Our study confirms that the non-canonical NF-κB axis LTß/NIK/RelB drives cholangiocarcinogenesis and represents a candidate therapeutic target.
Assuntos
Neoplasias dos Ductos Biliares , Proliferação de Células , Colangiocarcinoma , Receptor beta de Linfotoxina , Linfotoxina-beta , Quinase Induzida por NF-kappaB , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fator de Transcrição RelB , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/tratamento farmacológico , Humanos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Animais , Fator de Transcrição RelB/metabolismo , Fator de Transcrição RelB/genética , Proliferação de Células/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Linfotoxina-beta/metabolismo , Linfotoxina-beta/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NF-kappa B/metabolismoRESUMO
Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-xL and Mcl-1. Expression of Bcl-xL , Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-xL and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl-xL (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-xL induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-xL and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-xL in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-xL as a key protein in cell death resistance of CCA and may pave the way for clinical application.
Assuntos
Colangiocarcinoma , Proteína bcl-X , Humanos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Linhagem Celular Tumoral , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
Avoidance of therapy-induced apoptosis is a hallmark of acquired resistance towards radiotherapy. Thus, breaking resistance still challenges modern cancer therapy. The Bcl-2 protein family is known for its regulatory role in apoptosis signaling, making Bcl-2, Mcl-1 and Bcl-xL promising targets. This study evaluates the effects of highly specific inhibitors for Bcl-xL (WEHI-539), Bcl-2 (ABT-199) and Mcl-1 (S63845) as radiosensitizers. Covering a broad spectrum of solid tumors, Non-Small-Cell Lung Cancer (NSCLC), Head and Neck Squamous Cell Carcinoma (HNSCC) and synovial sarcoma cell lines were exposed to fractionated radiation as standard therapy with or without Bcl-2 protein inhibition. Protein expression was detected by Western blot and cell death was assessed by flow cytometry measuring apoptosis. In contrast to NSCLC, a high level of Bcl-xL and its upregulation during radiotherapy indicated radioresistance in HNSCC and synovial sarcoma. Radioresistant cell lines across all entities benefited synergistically from combined therapy with Bcl-xL inhibition and fractionated radiation. In NSCLC cell lines, Mcl-1 inhibition significantly augmented radiotherapy independent of the expression level. Our data suggest that among antiapoptotic Bcl-2 proteins, targeting Bcl-xL may break resistance to radiation in HNSCC, synovial sarcoma and NSCLC in vitro. In NSCLC, Mcl-1 might be a promising target that needs further investigation.