RESUMO
Humans often respond to sensory impulses provided by aromas, and current trends have generated interest in natural sources of fragrances rather than the commonly used synthetic additives. For the first time, the resulting aroma of a selected culture of Thymus mastichina L. was studied as a potential food ingredient. In this context, dried (DR) and fresh (FR) samples were submitted to carbon dioxide (CO2) supercritical extraction (SFE) and hydrodistillation (HD) methods. The extracts were characterised according to their volatile composition by GC-MS, cytotoxicity against a non-tumour cell culture, and sensory attributes (odour threshold and olfactive descriptors). The most abundant aromas were quantified, and the analysis performed by GC-MS revealed an abundance of terpenoids such as thymol chemotype, followed by the precursors α-terpinene and p-cymene. DR and FR extracts (EX) obtained from SFE-CO2 show the highest content of thymol, achieving 52.7% and 72.5% of the isolated volatile fraction. The DR essential oil (EO) contained the highest amount of terpenoids, but it was also the most cytotoxic extract. In contrast, SFE-CO2 products showed the lowest cytotoxic potential. Regarding FR-OE, it had the lowest extraction yield and composition in aroma volatiles. Additionally, all samples were described as having green, fresh and floral sensory notes, with no significant statistical differences regarding the odour detection threshold (ODT) values. Finally, FR-EX of T. mastichina obtained by SFE-CO2 presented the most promising results regarding food application.
Assuntos
Extratos Vegetais/farmacologia , Timol/análise , Thymus (Planta)/metabolismo , Antioxidantes/análise , Cromatografia com Fluido Supercrítico/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes , Óleos Voláteis/análise , Perfumes/análise , Extratos Vegetais/isolamento & purificação , Portugal , Solventes/análise , Terpenos/análiseRESUMO
Nuts have been part of the human diet since our early ancestors, and their use goes beyond nutritional purposes, for example, as aromatic sources for dairy products. This work explores the potential of almond (Prunus dulcis (Mill.) DA Webb), hazelnut (Corylus avellana L.), and walnut (Juglans regia L.) extracts as sources of food flavouring agents, suggesting a new added-value application for lower quality or excess production fruits. The extracts were obtained by supercritical fluid extraction with carbon dioxide and characterized by: quantification of the volatile fraction by HS-SPME GC-MS; sensory perception and description; and cytotoxicity against Vero cells. All extracts revealed potential as flavouring ingredients due to terpene abundance. No significant differences were observed for the minimal sensory perception, in which the odour threshold values ranged from 8.3 × 10-4 to 6.9 × 10-3 µg·mL-1 for walnuts and almonds extracts, respectively. In contrast, the cytotoxic potential differed significantly among the extracts, and P. dulcis extract presented lower cytotoxicity. Notes as woody, fresh, and green were identified in the volatile intensifiers obtained from the P. dulcis extract. Thus, almond extract was identified as the most promising ingredient to increase the sensory value of food products, namely bread. This potential was verified by an increase in the odour perception of bread after adding 4 µL of extract to each 100 g of bread dough. The quantified eucalyptol and d-limonene terpenes - found in the P. dulcis extract - have improved the release of the pleasant and natural volatile compounds from bread crust and crumb compared to the control bread chemical and sensory profiles.
Assuntos
Corylus , Juglans , Prunus dulcis , Animais , Chlorocebus aethiops , Humanos , Nozes/química , Prunus dulcis/química , Dióxido de Carbono/análise , Aromatizantes/análise , Pão , Células Vero , Extratos Vegetais/químicaRESUMO
The potential of R. officinalis L. (RO) extracts as a source of aromas was accessed by hydrodistillation (HD) and supercritical fluid extraction using carbon dioxide (SFE-CO2), followed by a series of analysis: quantification by GC-MS, sensory perception and description, and cytotoxicity against Vero cells. The extracts shown abundancy of α-pinene, eucalyptol, S-verbenone and camphor, contributing for the green, fresh, citric, and woody as main sensory notes. The odour threshold (ODT) value (less than 3.0 × 10-3 µg·mL-1) and the cytotoxic potential (ca. 220 µgâmL-1) defined the concentration range for food application. The most promising extract was added to bread doughs and the final volatile profile was characterised by GC-MS through HS-SPME over time. Among the 34 compounds found, furfural showed an evident contribution in the bread crust aroma, which persisted over four hours of storage, contributing to a pleasant bread fragrance according to the evaluators. This study aims to represent a stepping stone for the use of natural aromas as ingredients for the development of innovative food products.