Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 45: 213-222, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705315

RESUMO

Aqueous film-forming foams (AFFFs) contain a mixture of organic chemicals, including per- and poly-fluorinated, alkyl sulfonate substances (PFAS) (1-5%, w/w). Some longer-chain PFAS can be toxic, moderately bioaccumulative and persistent in the environment. In the present work, decomposition of PFAS present in two commercially available AFFFs (ANSUL- and 3M-) was investigated using a sono-chemical reactor of volume 91 L. The reactor consists of 12 transducers with operating frequencies of 1 MHz or 500 kHz and total input power of 12 kW. Degradation of PFASs performed using various dilutions of AFFF revealed that release of F- and SO4-2 ions was inversely proportional to initial pH of up to 4. Defluorination of ANSUL-AFFF resulted in an increase in the concentration of F- released from 55.6 ±â€¯0.3 µM (500× dilution) to 58.6 ±â€¯0.6 (25× dilution), while for 3M AFFF it increased from 19.9 ±â€¯0.7 µM (500× dilution) to 217.1 ±â€¯2.4 µM (25× dilution). Though amounts of F- released were less for ANSUL-AFFF than for 3M-AFFF, there was a considerable increase in removal of TOC and release of SO4-2 present in ANSUL-AFFF. Approximately 90.5% and 26.6% reduction of perfluoroalkyl sulfonates (PFSA) and perfluoroalkyl carboxylates (PFCA) in 3M, respectively, and 38.4% reduction of fluorotelomer sulfonates in ANSUL-AFFF were achieved in 13 h. Estimated costs of energy for the treatment of ANSUL-AFFF and 3M-AFFF at a 500× dilution were $0.015 ±â€¯0.0001/L and $0.019 ±â€¯0.0002/L, respectively.

2.
Sci Rep ; 6: 24864, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103508

RESUMO

A contactless method using a novel design of the experimental cell for formation of porous silicon with morphological gradient is reported. Fabricated porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements of morphology gradient were successfully formulated radially on porous films and the formation was attributed to decreasing current density radially inward on the silicon surface exposed to Triton(®) X-100 containing HF based etchant solution. Increasing the surfactant concentration increases the pore depth gradient but has a reverse effect on the pore size distribution. Interestingly, when dimethyl sulfoxide was used instead of Triton(®) X-100 in the etchant solution, no such morphological gradients were observed and a homogeneous porous film was formed.

3.
J Hazard Mater ; 318: 379-387, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27450329

RESUMO

Metal recovery from aqueous waste streams is an important goal for recycling, agriculture and mining industries. The development of more effective methods of recovery have been of increasing interest. The most common methods for metal recovery include precipitation, electrochemical, ion exchange, flocculation/coagulation and filtration. In the current work, a sono-electrochemical technique employing sound field at megasonic frequency (500kHz or 1MHz) in conjunction with electrochemistry is evaluated for enhanced recovery of selected metal ions (palladium, lead and gallium) with different redox potentials from their aqueous solutions. The surface morphology and elemental composition of the metal deposits were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The percent recovery was found to depend on the type of metal ion and the megasonic frequency used. Palladium was recovered in its metal form, while lead and gallium were oxidized during or after the recovery process.

4.
Chemosphere ; 147: 52-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26761597

RESUMO

Many modern techniques exist for the degradation of organic pollutants in water. Numerous treatment processes which utilize the formation of hydroxyl radicals for oxidation of pollutants have been studied thoroughly. In this study, a three pronged approach has been used to characterize and understand the effect of two distinct acoustic frequencies (37 kHz and 1 MHz) on cavitation behavior. Correlation of this behavior with sonolysis of a target phenol pollutant is described. Hydroxyl radical capture, hydrophone, and microelectrode studies in this work show that megasonic frequencies are more effective for generation of hydroxyl radicals and stable cavitation events than ultrasonic frequencies. UV absorption and fluorescence measurements confirm that the combination of ultrasonic sonolysis with a Fenton reagent achieved complete degradation of p-cresol at 50 mg/L in about 30 min. Cost estimates have been made for different sonication processes and compared with traditional advanced oxidation processes.


Assuntos
Cresóis/análise , Sonicação/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desenho de Equipamento , Peróxido de Hidrogênio/química , Radical Hidroxila/análise , Ferro/química , Oxirredução , Sonicação/instrumentação , Purificação da Água/instrumentação
5.
J Hazard Mater ; 317: 275-283, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27295064

RESUMO

Aqueous film-forming foams (AFFFs) are complex mixtures containing 1-5% w/w fluorocarbons (FCs). Here, we have investigated degradation of two commercial AFFF formulations, 3M and Ansul, using sound field at 500kHz and 1MHz, with varying initial concentrations ranging from 200 to 930× dilution. The foams were readily degraded by 1MHz, with percentage of defluorination ranging from 11.1±1.4% (200× dilution of 3M) to 47.1±5.8% (500× dilution of Ansul). Removal of total organic carbon (TOC) ranged from 16.0±1.4% (200× dilution Ansul) to 39.0±7.2% (500× dilution Ansul). Degradation of AFFF was affected by sound frequency with rates of defluorination 10-fold greater when the frequency was 1MHz than when it was 500kHz. Mineralization of TOC was 1.5- to 3.0-fold greater under 1MHz than 500kHz. Rate of fluoride release was 60% greater for the greatest initial concentration of FC in Ansul compared to the least initial concentration. While the rate of mineralization of AFFF was directly proportional to the initial concentration of Ansul, that was not the case for 3M, where the rates of mineralization were approximately the same for all three initial concentrations. Results of the study demonstrate that sonolysis is a promising technology to effectively treat AFFFs.

6.
J Hazard Mater ; 300: 662-669, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26282221

RESUMO

Perfluoooctanesulfonic acid (PFOS) is a perfluorinated compound (PFC) highly resistant to conventional advance oxidation processes, which was widely used in industrial activities due to its surfactant nature, olephobic-hydrophobic properties, and chemical inertness. Sonochemical treatment has been suggested as an effective approach to treat aqueous solutions containing minimal levels of PFCs. This study investigates PFOS sonochemical degradation and its dependency on the initial concentration (10-460 µM), and the applied sound frequency (25 and 500 kHz, and 1 MHz). PFOS was degraded by sonochemical treatment at concentrations as high as 460 µM, as demonstrated by fluoride release and total organic content data. PFOS degradation rate was higher at megasonic frequencies (1MHz) compared to ultrasonic frequencies (25-500 kHz). PFOS degradation was controlled by saturation kinetics as indicated by an increase in PFOS degradation rate with increasing PFOS concentration until a maximum, after which the degradation rate was independent of the concentration. The saturation conditions were dependent on the sound frequency, and they were reached at a lower concentration under 1 MHz (100 µM) compared to the 500 kHz frequency (>460 µM). Overall, the results of this study demonstrate that high PFOS concentration can be effectively sonochemically treated using megasonic frequencies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA