Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104515

RESUMO

Organic electronic materials have been considered for a wide-range of technological applications. More recently these organic (semi)conductors (encompassing both conducting and semi-conducting organic electronic materials) have received increasing attention as materials for bioelectronic applications. Biological tissues typically comprise soft, elastic, carbon-based macromolecules and polymers, and communication in these biological systems is usually mediated via mixed electronic and ionic conduction. In contrast to hard inorganic semiconductors, whose primary charge carriers are electrons and holes, organic (semi)conductors uniquely match the mechanical and conduction properties of biotic tissue. Here, we review the biocompatibility of organic electronic materials and their implementation in bioelectronic applications.


Assuntos
Materiais Biocompatíveis/química , Semicondutores , Animais , Materiais Biocompatíveis/farmacologia , Técnicas Biossensoriais , Adesão Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Polímeros/química
2.
BMJ Open ; 12(2): e055461, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149571

RESUMO

INTRODUCTION: Stroke reperfusion therapies, comprising intravenous thrombolysis (IVT) and/or endovascular thrombectomy (EVT), are best practice treatments for eligible acute ischemic stroke patients. In Australia, EVT is provided at few, mainly metropolitan, comprehensive stroke centres (CSC). There are significant challenges for Australia's rural and remote populations in accessing EVT, but improved access can be facilitated by a 'drip and ship' approach. TACTICS (Trial of Advanced CT Imaging and Combined Education Support for Drip and Ship) aims to test whether a multicomponent, multidisciplinary implementation intervention can increase the proportion of stroke patients receiving EVT. METHODS AND ANALYSIS: This is a non-randomised controlled, stepped wedge trial involving six clusters across three Australian states. Each cluster comprises one CSC hub and a minimum of three primary stroke centre (PSC) spokes. Hospitals will work in a hub and spoke model of care with access to a multislice CT scanner and CT perfusion image processing software (MIStar, Apollo Medical Imaging). The intervention, underpinned by behavioural theory and technical assistance, will be allocated sequentially, and clusters will move from the preintervention (control) period to the postintervention period. PRIMARY OUTCOME: Proportion of all stroke patients receiving EVT, accounting for clustering. SECONDARY OUTCOMES: Proportion of patients receiving IVT at PSCs, proportion of treated patients (IVT and/or EVT) with good (modified Rankin Scale (mRS) score 0-2) or poor (mRS score 5-6) functional outcomes and European Quality of Life Scale scores 3 months postintervention, proportion of EVT-treated patients with symptomatic haemorrhage, and proportion of reperfusion therapy-treated patients with good versus poor outcome who presented with large vessel occlusion at spokes. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Hunter New England Human Research Ethics Committee (18/09/19/4.13, HREC/18/HNE/241, 2019/ETH01238). Trial results will be disseminated widely through published manuscripts, conference presentations and at national and international platforms regardless of whether the trial was positive or neutral. TRIAL REGISTRATION NUMBER: ACTRN12619000750189; UTNU1111-1230-4161.


Assuntos
Isquemia Encefálica , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Austrália , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/terapia , Procedimentos Endovasculares/métodos , Humanos , Qualidade de Vida , Reperfusão , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/terapia , Trombectomia/efeitos adversos , Terapia Trombolítica/métodos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
3.
Front Neurol ; 12: 665808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858305

RESUMO

Delays in acute stroke treatment contribute to severe and negative impacts for patients and significant healthcare costs. Variability in clinical care is a contributor to delayed treatment, particularly in rural, regional and remote (RRR) areas. Targeted approaches to improve stroke workflow processes improve outcomes, but numerous challenges exist particularly in RRR settings. Virtual reality (VR) applications can provide immersive and engaging training and overcome some existing training barriers. We recently initiated the TACTICS trial, which is assessing a "package intervention" to support advanced CT imaging and streamlined stroke workflow training. As part of the educational component of the intervention we developed TACTICS VR, a novel VR-based training application to upskill healthcare professionals in optimal stroke workflow processes. In the current manuscript, we describe development of the TACTICS VR platform which includes the VR-based training application, a user-facing website and an automated back-end data analytics portal. TACTICS VR was developed via an extensive and structured scoping and consultation process, to ensure content was evidence-based, represented best-practice and is tailored for the target audience. Further, we report on pilot implementation in 7 Australian hospitals to assess the feasibility of workplace-based VR training. A total of 104 healthcare professionals completed TACTICS VR training. Users indicated a high level of usability, acceptability and utility of TACTICS VR, including aspects of hardware, software design, educational content, training feedback and implementation strategy. Further, users self-reported increased confidence in their ability to make improvements in stroke management after TACTICS VR training (post-training mean ± SD = 4.1 ± 0.6; pre-training = 3.6 ± 0.9; 1 = strongly disagree, 5 = strongly agree). Very few technical issues were identified, supporting the feasibility of this training approach. Thus, we propose that TACTICS VR is a fit-for-purpose, evidence-based training application for stroke workflow optimisation that can be readily deployed on-site in a clinical setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA