Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830361

RESUMO

The iontophoresis delivery of insulin (INS) remains a serious challenge due to the low permeability of the drug through the skin. This work aims to investigate the potential of water-soluble polypyrrole nanoparticles (WS-PPyNPs) as a drug donor matrix for controlled transdermal iontophoresis of INS. WS-PPyNPs have been prepared via a simple chemical polymerization in the presence of sodium dodecyl sulfate (SDS) as both dopant and the stabilizing agent. The synthesis of the soluble polymer was characterized using field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), fluorescence spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. The loading mechanism of INS onto the WS-PPyNPs is based on the fact that the drug molecules can be replaced with doped dodecyl sulfate. A two-compartment Franz-type diffusion cell was employed to study the effect of current density, formulation pH, INS concentration, and sodium chloride concentration on anodal iontophoresis (AIP) and cathodal iontophoresis (CIP) of INS across the rat skin. Both AIP and CIP delivery of INS using WS-PPyNPs were significantly increased compared to passive delivery. Furthermore, while the AIP experiment (60 min at 0.13 mA cm-2) show low cumulative drug permeation for INS (about 20.48 µg cm-2); the CIP stimulation exhibited a cumulative drug permeation of 68.29 µg cm-2. This improvement is due to the separation of positively charged WS-PPyNPs and negatively charged INS that has occurred in the presence of cathodal stimulation. The obtained results confirm the potential applicability of WS-PPyNPs as an effective approach in the development of controlled transdermal iontophoresis of INS.


Assuntos
Insulina/farmacologia , Iontoforese/métodos , Nanopartículas/química , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Microscopia Eletrônica de Varredura , Polímeros/química , Polímeros/farmacologia , Pirróis/química , Pirróis/farmacologia , Coelhos , Pele/ultraestrutura , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/farmacologia , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
2.
J Pharm Sci ; 112(8): 2249-2259, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36921801

RESUMO

A serious challenge in transdermal iontophoresis (IP) delivery of insulin (INS) is the low permeability of the drug across the skin. In this paper, we introduced deep eutectic solvent (DESs) as novel chemical penetration enhancers (CPEs) for transdermal IP of INS across rat skin, both in vitro and in vivo. Three different DESs based on choline chloride (ChCl), namely, ChCl/UR (ChCl and urea), ChCl/GLY (ChCl and glycerol), and ChCl/EG (ChCl and ethylene glycol) in the 1:2 molar ratios have been prepared. To evaluate the capability of studied DESs as CPEs for IP delivery of INS, the rat skin sample was treated with each DES. The effects of different experimental parameters (current density, formulation pH, INS concentration, NaCl concentration, and treatment time) on the in vitro transdermal iontophoretic delivery of INS were investigated. The in vitro permeation studies exhibited that INS was easily delivered employing ChCl/EG, and ChCl/GLY treatments, compared with ChCl/UR: the cumulative amount of permeated INS at the end of the experiment (Q24h) was found to be 131.0, 89.4, and 29.6 µg cm-2 in the presence of ChCl/EG, ChCl/GLY, and ChCl/UR, respectively. The differences in Q24h values of INS are due to the different capabilities of the studied DESs to treat the epidermis layer of skin. In vivo experiments revealed that the blood glucose level in diabetic rats could be decreased using ChCl/EG, and ChCl/GLY as novel CPEs in the IP delivery of INS. The presented work will open new doors towards searching for novel CPEs in the development of transdermal IP of INS.


Assuntos
Diabetes Mellitus Experimental , Insulina , Ratos , Animais , Iontoforese , Solventes Eutéticos Profundos , Diabetes Mellitus Experimental/tratamento farmacológico , Administração Cutânea , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA