Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(39): 11754-11758, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28742233

RESUMO

The synthesis and characterization of a new protein-polymer conjugate composed of ß lactoglobulin A (ßLG A) and poly(ethylene glycol) PEG is described. ßLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins.


Assuntos
Lactoglobulinas/química , Nanocápsulas/química , Polietilenoglicóis/química , Aminação , Dicroísmo Circular , Química Click , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/química , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ácido Succínico/química , Temperatura
2.
Org Biomol Chem ; 13(11): 3202-6, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25673512

RESUMO

Bio-orthogonal chemistry has been widely used for conjugation of polymer molecules to proteins. Here, we demonstrate the conjugation of polyethylene glycol (PEG) to bovine beta-lactoglobulin (BLG) by photo-induced cyclo-addition of tetrazole-appended PEG and allyl-modified BLG. During the course of the investigation, a significant side-reaction was found to occur for the conjugation of PEG-tetrazole to native BLG. Further exploration of the underlying chemistry reveals that the presence of a tryptophan residue is sufficient for conjugation of tetrazole-modified molecules.


Assuntos
Lactoglobulinas/química , Tetrazóis/química , Animais , Bovinos , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos , Polietilenoglicóis/química
3.
Polymers (Basel) ; 12(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331448

RESUMO

In this work, we have used low-molecular-weight (PEG12-b-PCL6, PEG12-b-PCL9 or PEG16-b-PLA38; MW, 1.25-3.45 kDa) biodegradable block co-polymers to construct nano- and micron-scaled hybrid (polymer/lipid) vesicles, by solvent dispersion and electroformation methods, respectively. The hybrid vesicles exhibit physical properties (size, bilayer thickness and small molecule encapsulation) of a vesicular boundary, confirmed by cryogenic transmission electron microscopy, calcein leakage assay and dynamic light scattering. Importantly, we find that these low MW polymers, on their own, do not self-assemble into polymersomes at nano and micron scales. Using giant unilamellar vesicles (GUVs) model, their surface topographies are homogeneous, independent of cholesterol, suggesting more energetically favorable mixing of lipid and polymer. Despite this mixed topography with a bilayer thickness similar to that of a lipid bilayer, variation in surface topology is demonstrated using the interfacial sensitive phospholipase A2 (sPLA2). The biodegradable hybrid vesicles are less sensitive to the phospholipase digestion, reminiscent of PEGylated vesicles, and the degree of sensitivity is polymer-dependent, implying that the nano-scale surface topology can further be tuned by its chemical composition. Our results reveal and emphasize the role of phospholipids in promoting low MW polymers for spontaneous vesicular self-assembly, generating a functional hybrid lipid-polymer interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA