Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38968091

RESUMO

BACKGROUND: Cardiotoxicity is a major cause of drug withdrawal. The hERG channel, regulating ion flow, is pivotal for heart and nervous system function. Its blockade is a concern in drug development. Predicting hERG blockade is essential for identifying cardiac safety issues. Various QSAR models exist, but their performance varies. Ongoing improvements show promise, necessitating continued efforts to enhance accuracy using emerging deep learning algorithms in predicting potential hERG blockade. STUDY DESIGN AND METHOD: Using a large training dataset, six individual QSAR models were developed. Additionally, three ensemble models were constructed. All models were evaluated using 10-fold cross-validations and two external datasets. RESULTS: The 10-fold cross-validations resulted in Mathews correlation coefficient (MCC) values from 0.682 to 0.730, surpassing the best-reported model on the same dataset (0.689). External validations yielded MCC values from 0.520 to 0.715 for the first dataset, exceeding those of previously reported models (0 - 0.599). For the second dataset, MCC values fell between 0.025 and 0.215, aligning with those of reported models (0.112 - 0.220). CONCLUSIONS: The developed models can assist the pharmaceutical industry and regulatory agencies in predicting hERG blockage activity, thereby enhancing safety assessments and reducing the risk of adverse cardiac events associated with new drug candidates.

2.
Exp Biol Med (Maywood) ; 248(21): 1952-1973, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38057999

RESUMO

The ever-increasing number of chemicals has raised public concerns due to their adverse effects on human health and the environment. To protect public health and the environment, it is critical to assess the toxicity of these chemicals. Traditional in vitro and in vivo toxicity assays are complicated, costly, and time-consuming and may face ethical issues. These constraints raise the need for alternative methods for assessing the toxicity of chemicals. Recently, due to the advancement of machine learning algorithms and the increase in computational power, many toxicity prediction models have been developed using various machine learning and deep learning algorithms such as support vector machine, random forest, k-nearest neighbors, ensemble learning, and deep neural network. This review summarizes the machine learning- and deep learning-based toxicity prediction models developed in recent years. Support vector machine and random forest are the most popular machine learning algorithms, and hepatotoxicity, cardiotoxicity, and carcinogenicity are the frequently modeled toxicity endpoints in predictive toxicology. It is known that datasets impact model performance. The quality of datasets used in the development of toxicity prediction models using machine learning and deep learning is vital to the performance of the developed models. The different toxicity assignments for the same chemicals among different datasets of the same type of toxicity have been observed, indicating benchmarking datasets is needed for developing reliable toxicity prediction models using machine learning and deep learning algorithms. This review provides insights into current machine learning models in predictive toxicology, which are expected to promote the development and application of toxicity prediction models in the future.


Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos
3.
Exp Biol Med (Maywood) ; 248(21): 1927-1936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997891

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic resulted in millions of people becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and close to seven million deaths worldwide. It is essential to further explore and design effective COVID-19 treatment drugs that target the main protease of SARS-CoV-2, a major target for COVID-19 drugs. In this study, machine learning was applied for predicting the SARS-CoV-2 main protease binding of Food and Drug Administration (FDA)-approved drugs to assist in the identification of potential repurposing candidates for COVID-19 treatment. Ligands bound to the SARS-CoV-2 main protease in the Protein Data Bank and compounds experimentally tested in SARS-CoV-2 main protease binding assays in the literature were curated. These chemicals were divided into training (516 chemicals) and testing (360 chemicals) data sets. To identify SARS-CoV-2 main protease binders as potential candidates for repurposing to treat COVID-19, 1188 FDA-approved drugs from the Liver Toxicity Knowledge Base were obtained. A random forest algorithm was used for constructing predictive models based on molecular descriptors calculated using Mold2 software. Model performance was evaluated using 100 iterations of fivefold cross-validations which resulted in 78.8% balanced accuracy. The random forest model that was constructed from the whole training dataset was used to predict SARS-CoV-2 main protease binding on the testing set and the FDA-approved drugs. Model applicability domain and prediction confidence on drugs predicted as the main protease binders discovered 10 FDA-approved drugs as potential candidates for repurposing to treat COVID-19. Our results demonstrate that machine learning is an efficient method for drug repurposing and, thus, may accelerate drug development targeting SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos/métodos , Algoritmo Florestas Aleatórias , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo
4.
Exp Biol Med (Maywood) ; 248(21): 1974-1992, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38102956

RESUMO

Brain tumors are often fatal. Therefore, accurate brain tumor image segmentation is critical for the diagnosis, treatment, and monitoring of patients with these tumors. Magnetic resonance imaging (MRI) is a commonly used imaging technique for capturing brain images. Both machine learning and deep learning techniques are popular in analyzing MRI images. This article reviews some commonly used machine learning and deep learning techniques for brain tumor MRI image segmentation. The limitations and advantages of the reviewed machine learning and deep learning methods are discussed. Even though each of these methods has a well-established status in their individual domains, the combination of two or more techniques is currently an emerging trend.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA