Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685031

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Disfunção Cognitiva , Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Reconhecimento Psicológico/fisiologia , Obesidade/patologia , Obesidade/complicações , Aprendizagem em Labirinto/fisiologia
2.
Brain Behav Immun ; 120: 584-603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986724

RESUMO

Aged individuals with spinal cord injury (SCI) are prevalent with increased mortality and worse outcomes. SCI can cause secondary brain neuroinflammation and neurodegeneration. However, the mechanisms contributing to SCI-induced brain dysfunction are poorly understood. Cell-to-cell signaling through extracellular vesicles (EVs) has emerged as a critical mediator of neuroinflammation, including at a distance through circulation. We have previously shown that SCI in young adult (YA) male mice leads to robust changes in plasma EV count and microRNAs (miRs) content. Here, our goal was to investigate the impact of old age on EVs and brain after SCI. At 24 h post-injury, there was no difference in particle count or size distribution between YA and aged mice. However, aged animals increased expression of EV marker CD63 with SCI. Using the Fireplex® miRs assay, Proteomics, and mass spectrometry-based Lipidomics, circulating EVs analysis identified distinct profiles of miRs, proteins, and lipid components in old and injury animals. In vitro, plasma EVs from aged SCI mice, at a lower concentration comparable to those of YA SCI mice, induced the secretion of pro-inflammatory cytokines and neuronal apoptosis. Systemic administration of plasma EVs from SCI animals was sufficient to impair general physical function and neurological function in intact animals, which is associated with pro-inflammatory changes in the brain. Furthermore, plasma EVs from young animals had rejuvenating effects on naïve aged mice. Collectively, these studies identify the critical changes in circulating EVs cargoes after SCI and in aged animals and support a potential EV-mediated mechanism for SCI-induced brain changes.


Assuntos
Envelhecimento , Encéfalo , Vesículas Extracelulares , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Vesículas Extracelulares/metabolismo , Masculino , Camundongos , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Citocinas/metabolismo , Citocinas/sangue , Neurônios/metabolismo , Inflamação/metabolismo
3.
Brain Behav Immun ; 92: 165-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307173

RESUMO

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Nanopartículas , Traumatismos da Medula Espinal , Animais , Camundongos
4.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546932

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.

5.
Res Sq ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131758

RESUMO

Approximately 20% of all spinal cord injuries (SCI) occur in persons aged 65 years or older. Longitudinal, population-based studies showed that SCI is a risk factor for dementia. However, little research has addressed the potential mechanisms of SCI-mediated neurological impairment in the elderly. We compared young adult and aged C57BL/6 male mice subjected to contusion SCI, using a battery of neurobehavioral tests. Locomotor function showed greater impairment in aged mice, which was correlated with reduced, spared spinal cord white matter and increased lesion volume. At 2 months post-injury, aged mice displayed worse performance in cognitive and depressive-like behavioral tests. Transcriptomic analysis identified activated microglia and dysregulated autophagy as the most significantly altered pathways by both age and injury. Flow cytometry demonstrated increased myeloid and lymphocyte infiltration at both the injury site and brain of aged mice. SCI in aged mice was associated with altered microglial function and dysregulated autophagy involving both microglia and brain neurons. Altered plasma extracellular vesicles (EVs) responses were found in aged mice after acute SCI. EV-microRNA cargos were also significantly altered by aging and injury, which were associated with neuroinflammation and autophagy dysfunction. In cultured microglia, astrocytes, and neurons, plasma EVs from aged SCI mice, at a lower concentration comparable to those of young adult SCI mice, induced the secretion of pro-inflammatory cytokines CXCL2 and IL-6, and increased caspase3 expression. Together, these findings suggest that age alters the EVs pro-inflammatory response to SCI, potentially contributing to worse neuropathological and functional outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA