Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Health Insights ; 18: 11786302241227307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420255

RESUMO

The environmental impacts of global warming driven by methane (CH4) emissions have catalyzed significant research initiatives in developing novel technologies that enable proactive and rapid detection of CH4. Several data-driven machine learning (ML) models were tested to determine how well they identified fugitive CH4 and its related intensity in the affected areas. Various meteorological characteristics, including wind speed, temperature, pressure, relative humidity, water vapor, and heat flux, were included in the simulation. We used the ensemble learning method to determine the best-performing weighted ensemble ML models built upon several weaker lower-layer ML models to (i) detect the presence of CH4 as a classification problem and (ii) predict the intensity of CH4 as a regression problem. The classification model performance for CH4 detection was evaluated using accuracy, F1 score, Matthew's Correlation Coefficient (MCC), and the area under the receiver operating characteristic curve (AUC ROC), with the top-performing model being 97.2%, 0.972, 0.945 and 0.995, respectively. The R 2 score was used to evaluate the regression model performance for CH4 intensity prediction, with the R 2 score of the best-performing model being 0.858. The ML models developed in this study for fugitive CH4 detection and intensity prediction can be used with fixed environmental sensors deployed on the ground or with sensors mounted on unmanned aerial vehicles (UAVs) for mobile detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA