Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pathol ; 248(4): 421-437, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982971

RESUMO

Tspan8 exhibits a functional role in many cancer types including pancreatic, colorectal, oesophagus carcinoma, and melanoma. We present a first study on the expression and function of Tspan8 in breast cancer. Tspan8 protein was present in the majority of human primary breast cancer lesions and metastases in the brain, bone, lung, and liver. In a syngeneic rat breast cancer model, Tspan8+ tumours formed multiple liver and spleen metastases, while Tspan8- tumours exhibited a significantly diminished ability to metastasise, indicating a role of Tspan8 in metastases. Addressing the underlying molecular mechanisms, we discovered that Tspan8 can mediate up-regulation of E-cadherin and down-regulation of Twist, p120-catenin, and ß-catenin target genes accompanied by the change of cell phenotype, resembling the mesenchymal-epithelial transition. Furthermore, Tspan8+ cells exhibited enhanced cell-cell adhesion, diminished motility, and decreased sensitivity to irradiation. As a regulator of the content and function of extracellular vesicles (EVs), Tspan8 mediated a several-fold increase in EV number in cell culture and the circulation of tumour-bearing animals. We observed increased protein levels of E-cadherin and p120-catenin in these EVs; furthermore, Tspan8 and p120-catenin were co-immunoprecipitated, indicating that they may interact with each other. Altogether, our findings show the presence of Tspan8 in breast cancer primary lesion and metastases and indicate its role as a regulator of cell behaviour and EV release in breast cancer. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Lobular/metabolismo , Tetraspaninas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Lobular/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares , Feminino , Humanos , Metástase Neoplásica , Ratos , Transdução de Sinais
2.
Mol Pharm ; 11(3): 683-96, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24476132

RESUMO

The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity.


Assuntos
Arginina/química , Cisteína/química , DNA/administração & dosagem , Sistemas de Liberação de Medicamentos , Histidina/química , Fragmentos de Peptídeos/administração & dosagem , Animais , Apoptose , Arginina/metabolismo , Células CHO , Proliferação de Células , Células Cultivadas , Cricetinae , Cricetulus , Cisteína/metabolismo , DNA/metabolismo , Endossomos/metabolismo , Citometria de Fluxo , Técnicas de Transferência de Genes , Células HeLa , Histidina/metabolismo , Humanos , Células MCF-7 , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Transfecção
3.
Mol Pharm ; 8(5): 1729-41, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21780847

RESUMO

Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. L-lysine and L-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used L-lysine and L-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.


Assuntos
Arginina/química , Empacotamento do DNA , DNA de Neoplasias/ultraestrutura , Técnicas de Transferência de Genes , Lisina/química , Neoplasias/ultraestrutura , Peptídeos/química , Animais , Arginina/metabolismo , Transporte Biológico , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , DNA de Neoplasias/química , DNA Viral/administração & dosagem , DNA Viral/química , Proteínas de Ligação a DNA/química , Vetores Genéticos/metabolismo , Humanos , Lisina/metabolismo , Peso Molecular , Neoplasias/metabolismo , Conformação de Ácido Nucleico , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Tamanho da Partícula , Peptídeos/metabolismo , Relação Estrutura-Atividade
4.
Adv Sci (Weinh) ; 6(4): 1800948, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30828519

RESUMO

The success of malignant tumors is conditioned by the intercellular communication between tumor cells and their microenvironment, with extracellular vesicles (EVs) acting as main mediators. While the value of 3D conditions to study tumor cells is well established, the impact of cellular architecture on EV content and function is not investigated yet. Here, a recently developed 3D cell culture microwell array is adapted for EV production and a comprehensive comparative analysis of biochemical features, RNA and proteomic profiles of EVs secreted by 2D vs 3D cultures of gastric cancer cells, is performed. 3D cultures are significantly more efficient in producing EVs than 2D cultures. Global upregulation of microRNAs and downregulation of proteins in 3D are observed, indicating their dynamic coregulation in response to cellular architecture, with the ADP-ribosylation factor 6 signaling pathway significantly downregulated in 3D EVs. The data strengthen the biological relevance of cellular architecture for production and cargo of EVs.

5.
J Control Release ; 157(2): 260-71, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-21996011

RESUMO

Amphipathic peptides with unusual cellular translocation properties have been used as carriers of different biomolecules. However, the parameters which control the delivery efficiency of a particular cargo by a peptide and the selectivity of cargo delivery are not very well understood. In this work, we have used the known cell penetrating peptide pVEC (derived from VE-cadherin) and systematically changed its amphipathicity (from primary to secondary) as well as the total charge and studied whether these changes influence the plasmid DNA condensation ability, cellular uptake of the peptide-DNA complexes and in turn the efficiency of DNA delivery of the peptide. Our results show that although the efficiency of DNA delivery of pVEC is poor, modification of the same peptide to create a combination of nine arginines along with secondary amphipathicity improves its plasmid DNA delivery efficiency, particularly in presence of an endosomotropic agent like chloroquine. In addition, presence of histidines along with 9 arginines and secondary amphipathicity shows efficient DNA delivery with low toxicity even in absence of chloroquine in multiple cell lines. We attribute these enhancements in transfection efficiency to the differences in the mechanism of complex formation by the different variants of the parent peptide which in turn are related to the chemical nature of the peptide itself. These results exhibit the importance of understanding the physicochemical parameters of the carrier and complex in modulating gene delivery efficiency. Such studies can be helpful in improving peptide design for delivery of different cargo molecules.


Assuntos
Antígenos CD/administração & dosagem , Caderinas/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , DNA/administração & dosagem , Técnicas de Transferência de Genes , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , L-Lactato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA