Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Front Endocrinol (Lausanne) ; 13: 866573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35518939

RESUMO

Background: Neonatal diabetes mellitus (NDM) is a rare (1:90,000 newborns) but potentially devastating metabolic disorder characterized by hyperglycemia combined with low levels of insulin. Dominantly-acting insulin (INS) gene mutations cause permanent NDM through single amino acid changes in the protein sequence leading to protein misfolding, which is retained within the endoplasmic reticulum (ER), causing ER stress and ß-cell apoptosis. Over 90 dominantly-acting INS gene mutations have been identified in individuals with permanent NDM. Patients and Methods: The study included 70 infants diagnosed with NDM in the first year of life between May 2008 and May 2021 at the Vietnam National Children's Hospital. Sequencing analysis of all the genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Clinical characteristics, molecular genetics, and annual data relating to glycemic control (HbA1c) and severe hypoglycemia of those with INS mutations were collected. The main outcomes of interest were HbA1c, daily insulin dose, growth, and cognitive/motor development. Results: Fifty-five of 70 infants (78.5%) with NDM harbored a mutation in a known disease-causing gene and of these, 10 had six different de novo heterozygous INS mutations. Mean gestational age was 38.1 ± 2.5 weeks and mean birth weight was 2.8 ± 0.5 g. They presented with NDM at 20 ± 17 weeks of age; 6/10 had diabetic ketoacidosis with pH 7.13 ± 0.26; plasma glucose level 32.6 ± 14.3 mmol/l and HbA1C 81 ± 15% mmol/mol. After 5.5 ± 4.8 years of insulin treatment, 9/10 have normal development with a developmental quotient of 80-100% and HbA1C 64 ± 7.3 mmol/mol, 9/10 have normal height, weight, and BMI on follow-up. Conclusions: We report a series of Vietnamese NDM cases with dominant INS mutations. INS mutations are the third commonest cause of permanent NDM. We recommend screening of the INS gene in all children diagnosed with diabetes in the first year of life.


Assuntos
Diabetes Mellitus , Cetoacidose Diabética , Doenças do Recém-Nascido , Povo Asiático , Criança , Diabetes Mellitus/etiologia , Diabetes Mellitus/genética , Hemoglobinas Glicadas , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/epidemiologia , Doenças do Recém-Nascido/genética , Insulina/genética , Mutação , Vietnã/epidemiologia
2.
Front Endocrinol (Lausanne) ; 12: 727083, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566892

RESUMO

Background: Neonatal diabetes mellitus (NDM) is defined as insulin-requiring persistent hyperglycemia occurring within the first 6 months of life, which can result from mutations in at least 25 different genes. Activating heterozygous mutations in genes encoding either of the subunits of the ATP-sensitive K+ channel (KATP channel; KCNJ11 or ABCC8) of the pancreatic beta cell are the most common cause of permanent NDM and the second most common cause of transient NDM. Patients with NDM caused by KATP channel mutations are sensitive to sulfonylurea (SU) treatment; therefore, their clinical management can be improved by replacing insulin with oral agents. Patients and Methods: Seventy patients were diagnosed with NDM between May 2008 and May 2021 at Vietnam National Children's Hospital, and molecular genetic testing for all genes known to cause NDM was performed at the Exeter Genomic Laboratory, UK. Patients with ABCC8 or KCNJ11 mutations were transferred from insulin to oral SU. Clinical characteristics, molecular genetics, and annual data relating to glycemic control, SU dose, severe hypoglycemia, and side effects were collected. The main outcomes of interest were SU dose, SU failure (defined as permanent reintroduction of daily insulin), and glycemic control (HbA1c). Results: Fifty-four of 70 patients (77%) with NDM harbored a genetic mutation and of these; 27 (50%) had activating heterozygous mutations in ABCC8 or KCNJ11. A total of 21 pathogenic mutations were identified in the 27 patients, including 13 mutations in ABCC8 and 8 mutations in KCNJ11. Overall, 51% had low birth weight (below 3rd percentile), 23 (85%) were diagnosed before 3 months of age, and 23 (85%) presented with diabetic ketoacidosis. At diagnosis, clinical and biochemical findings (mean ± SD) were pH 7.16 ± 0.16; HCO3- , 7.9 ± 7.4 mmol/L; BE, -17.9 ± 9.1 mmol/L; HbA1C, 7.98% ± 2.93%; blood glucose, 36.2 ± 12.3 mmol/L; and C-peptide median, 0.09 (range, 0-1.61 nmol/l). Twenty-six patients were successfully transferred from insulin to SU therapy. In the remaining case, remission of diabetes occurred prior to transfer. Glycemic control on SU treatment was better than on insulin treatment: HbA1c and blood glucose level decreased from 7.58% ± 4.63% and 19.04 ± 14.09 mmol/L when treated with insulin to 5.8 ± 0.94% and 6.87 ± 3.46 mmol/L when treated with SU, respectively. Conclusions: This is the first case series of NDM patients with ABCC8/KCNJ11 mutations reported in Vietnam. SU is safe in the short term for these patients and more effective than insulin therapy, consistent with all studies to date. This is relevant for populations where access to and cost of insulin are problematic, reinforcing the importance of genetic testing for NDM.


Assuntos
Diabetes Mellitus , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Feminino , Testes Genéticos , Hospitais Pediátricos , Humanos , Hipoglicemiantes/uso terapêutico , Lactente , Recém-Nascido , Doenças do Recém-Nascido/tratamento farmacológico , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/patologia , Canais KATP/genética , Masculino , Técnicas de Diagnóstico Molecular , Mutação , Fenótipo , Prognóstico , Compostos de Sulfonilureia/uso terapêutico , Resultado do Tratamento , Vietnã
3.
Front Pediatr ; 8: 321, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793520

RESUMO

Background: Ornithine transcarbamylase deficiency (OTCD) is an X- linked recessive disorder and the most common error of the urea cycle, caused by the mutations in the OTC gene. Due to X-inactivation, 15-20% of female carriers present symptoms of OTCD at late onset. Early diagnosis of OTCD by molecular analysis in females is highly desirable. The aim of the study was to identify the mutations in two unrelated Vietnamese girls suspected with OTCD and the carriers in their families for definitive diagnosis and proper counseling. Case Presentation: Two patients presented with an acute encephalopathy at the first admission. Biochemical tests revealed hyperammonemia, hyperlactatemia, elevated glutamine level, elevated transaminase, elevated urinary orotic and uracil acid levels, and disorder of prothrombin time. Brain magnetic resonance imaging indicated cerebral edema. Based on the clinical and laboratory results, the two patients were diagnosed with urea cycle disorders. Therefore, the two patients were managed by stopping feeding, with infused glucose, l-carnitine, l-arginine, and sodium benzoate, and with hemofiltration. The two patients were alert and recovered with normal blood ammonia levels after 72 h of treatment. The family history of patient 1 showed that her brother died at 4 days of age due to a coma and dyspnea, while her parents were asymptomatic. Variable phenotypes were observed in three generations of the patient 2's family, including asymptomatic (mother), affected female adults dying at the first symptom (grandmother and aunt), and affected males dying in the first week of life (uncle, cousin, and siblings). Whole-exome sequencing showed two mutations in the OTC gene, including one novel missense mutation, c.365A>T, in the patient 1 and one previously reported splicing mutation, c.717+1G>A, in the patient 2. The two mutations are evaluated as likely pathogenic and pathogenic, respectively, according to the recommendations of the American College of Medical Genetics and Genomics (ACMG). Genetic analyses in the families indicated the mothers were heterozygous. Conclusion: Clinical, biochemical, and molecular findings accurately diagnosed the two patients with late-onset OTCD. Our results explained the genetic causes and proposed the risk in the patients' families, which could be useful for genetic counseling and monitoring in prenatal diagnosis.

4.
Mol Genet Metab Rep ; 16: 5-10, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29946514

RESUMO

BACKGROUND: Expanded newborn screening (ENBS) utilizing tandem mass spectrometry (MS/MS) for inborn metabolic diseases (IMDs), such as organic acidemias (OAs), fatty acid oxidation disorders, (FAODs), and amino acid disorders (AAs), is increasingly popular but has not yet been introduced in many Asian countries. This study aimed to determine the incidence rates of OAs, FAODs, and AAs in Asian countries and Germany using selective screening and ENBS records. MATERIALS AND METHODS: Selective screening for IMDs using gas chromatography-mass spectrometry and MS/MS was performed among patients suspected to be afflicted in Asian countries (including Japan, Vietnam, China, and India) between 2000 and 2015, and the results from different countries were compared. Similarly, ENBS results from Japan, South Korea, Taiwan, and Germany were compared. Additionally, the results of selective screening and ENBS in Japan were compared. RESULTS: Among 39,270 patients who underwent selective screening, IMDs were detected in 1170. Methylmalonic acidemia was frequently identified in several countries, including Japan (81/377 diagnosed IMDs), China (94/216 IMDs), and India (72/293 IMDs). In Vietnam, however, ß-ketothiolase deficiency was particularly frequent (33/250 IMDs). ENBS yielded differences in overall IMD rates by country: 1:8557 in Japan, 1:7030 in Taiwan, 1:13,205 in South Korea, and 1:2200 in Germany. Frequently discovered diseases included propionic acidemia (PPA) and phenylketonuria (PKU) in Japan, 3-methylcrotonyl-CoA carboxylase deficiency (MCCD) and PKU in Taiwan, MCCD and citrullinemia type I in South Korea, and PKU and medium-chain acyl-CoA dehydrogenase deficiency in Germany. Furthermore, in Japan, selective screening and ENBS yielded respective PPA frequencies of 14.7% and 49.4% among all organic acidemias. CONCLUSION: The incidence rates of IMDs vary by country. Moreover, the disease spectra of IMDs detected via selective screening differ from those detected via ENBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA