Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 10(40): 23675-23681, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35517329

RESUMO

We report the development and use of a light-mediated in situ grafting technology for the surface modification of biosynthetic corneal implants with peptide-capped nanoparticles (15-65 nm). The resulting materials have antimicrobial properties in bacterial suspension and also reduced the extent of biofilm formation. Our in situ grafting technology offers a rapid route for the introduction of antimicrobial properties to premoulded corneal implants, and potentially other soft implant targets.

2.
ACS Biomater Sci Eng ; 6(2): 1124-1134, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33464871

RESUMO

A novel strategy is needed for treating nonhealing wounds, which is able to simultaneously eradicate pathogenic bacteria and promote tissue regeneration. This would improve patient outcome and reduce the number of lower limb amputations. In this work, we present a multifunctional therapeutic approach able to control bacterial infections, provide a protective barrier to a full-thickness wound, and improve wound healing in a clinically relevant animal model. Our approach uses a nanoengineered antimicrobial nanoparticle for creating a sprayable layer onto the wound bed that prevents bacterial proliferation and also eradicates preformed biofilms. As a protective barrier for the wound, we developed a thermoresponsive collagen-based matrix that has prohealing properties and is able to fill wounds independent of their geometries. Our results indicate that using a combination of the matrix with full-thickness microscopic skin tissue columns synergistically contributed to faster and superior skin regeneration in a nonhealing wound model in diabetic mice.


Assuntos
Diabetes Mellitus Experimental , Animais , Colágeno , Diabetes Mellitus Experimental/tratamento farmacológico , Modelos Animais de Doenças , Camundongos , Pele , Cicatrização
3.
Heliyon ; 4(12): e01067, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619958

RESUMO

In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA