RESUMO
We conducted a longitudinal study of cryptosporidiosis from birth to three years of age in an urban slum of Dhaka Bangladesh. Fecal DNA was extracted from monthly surveillance samples and diarrheal stool samples collected from 392 infants from birth to three years. A pan-Cryptosporidium qPCR assay was used to identify sub-clinical and symptomatic cryptosporidiosis. Anthropometric measurements were collected quarterly to assess child nutritional status. 31% (121/392) of children experienced a single and 57% (222/392) multiple infections with Cryptosporidium. Repeat infections had a lower burden of parasites in the stool (Cq slope = -1.85; p<0.0001) and were more likely to be sub-clinical (Chi square test for trend; p = 0.01). Repeat infections were associated with the development of growth faltering (Pearson correlation = -0.18; p = 0.0004). High levels of fecal IgA antibodies against the Cryptosporidium Cp23 sporozoite protein at one year of life were associated with a delay in reinfection and amelioration of growth faltering through three years of life (HAZ IgA high responders -1.323 ± 0.932 versus HAZ -1.731 ± 0.984 p = 0.0001). We concluded that nonsterile immunity to cryptosporidiosis in young children was associated with high levels of mucosal IgA anti-Cp23 and protection from diarrhea and growth faltering. Trial Registration: NCT02764918.
Assuntos
Transtornos da Nutrição Infantil/imunologia , Transtornos da Nutrição Infantil/parasitologia , Criptosporidiose/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Bangladesh , Pré-Escolar , Criptosporidiose/complicações , Diarreia/parasitologia , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Proteínas de Protozoários/imunologia , Esporozoítos/imunologiaRESUMO
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is one of the most contagious diseases in human history that has already affected millions of lives worldwide. To date, no vaccines or effective therapeutics have been discovered yet that may successfully treat COVID-19 patients or contain the transmission of the virus. Scientific communities across the globe responded rapidly and have been working relentlessly to develop drugs and vaccines, which may require considerable time. In this uncertainty, repurposing the existing antiviral drugs could be the best strategy to speed up the discovery of effective therapeutics against SARS-CoV-2. Moreover, drug repurposing may leave some vital information on druggable targets that could be capitalized in target-based drug discovery. Information on possible drug targets and the progress on therapeutic and vaccine development also needs to be updated. In this review, we revisited the druggable targets that may hold promise in the development of the anti-SARS-CoV-2 agent. Progresses on the development of potential therapeutics and vaccines that are under the preclinical studies and clinical trials have been highlighted. We anticipate that this review will provide valuable information that would help to accelerate the development of therapeutics and vaccines against SARS-CoV-2 infection.
RESUMO
Studies regarding bisphenol A (BPA) exposure and male (in)fertility have conventionally focused on modifications in ejaculated spermatozoa function from exposed individuals. However, mammalian spermatozoa are incapable of fertilization prior to achieving capacitation, the penultimate step in maturation. Therefore, it is necessary to investigate BPA-induced changes in capacitated spermatozoa and assess the consequences on subsequent fertilization. Here, we demonstrate the effect of gestational BPA exposure (50 µg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on the functions, biochemical properties, and proteomic profiles of F1 capacitated spermatozoa from adult mice. The data showed that high concentrations of BPA inhibited motility, motion kinematics, and capacitation of spermatozoa, perhaps because of increased lipid peroxidation and protein tyrosine nitration, and decreased intracellular ATP levels and protein kinase-A activity in spermatozoa. We also found that BPA compromised the rates of fertilization and early embryonic development. Differentially expressed proteins identified between BPA-exposed and control groups play a critical role in energy metabolism, stress responses, and fertility. Protein function abnormalities were responsible for the development of several diseases according to bioinformatics analysis. On the basis of these results, gestational exposure to BPA may alter capacitated spermatozoa function and the proteomic profile, ultimately affecting their fertility potential.
Assuntos
Compostos Benzidrílicos/efeitos adversos , Fenóis/efeitos adversos , Capacitação Espermática/efeitos dos fármacos , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Gravidez , Proteômica , Motilidade dos Espermatozoides/efeitos dos fármacosRESUMO
The objective of this study was to isolate and characterize antagonistic rhizobacteria from chili against a notorious phytopathogen Phytophthora capsici. Among the 48 bacteria isolated, BTLbbc-02, BTLbbc-03, and BTLbbc-05 were selected based on their inhibitory activity against P. capsici. They were tentatively identified as Burkholderia metallica BTLbbc-02, Burkholderia cepacia BTLbbc-03, and Pseudomonas aeruginosa BTLbbc-05, respectively, based on their 16S rRNA gene sequencing. All inhibited the growth of P. capsici at varying levels by inducing characteristic morphological alterations of P. capsici hyphae. The cell-free culture supernatant of all three isolates impaired motility (up to 100%) and caused lysis (up to 50%) of the halted zoospores. Bioassays revealed that Pseudomonas sp. had higher antagonism and zoospore motility-inhibitory effects against P. capsici compared with two other isolates, Burkholderia spp. and B. metallica, which caused vacuolation in mycelium. All three bacteria suppressed sporangium formation and zoosporogenesis of P. capsici, and improved the seed germination and growth of cucumber. Our findings suggest that epiphytic bacteria, B. metallica, B. cepacia, and P. aeruginosa, could be used as potential biocontrol agents against P. capsici. A further study is required to ensure conformity with the existing regulations for soil, plant, and human health.
Assuntos
Antibiose , Burkholderia cepacia/fisiologia , Phytophthora/fisiologia , Pseudomonas aeruginosa/fisiologia , Agentes de Controle Biológico/farmacologia , Phytophthora/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacosRESUMO
OBJECTIVE: Several studies have reported the development of new molecular methods for the prognosis and diagnosis of male fertility based on biomarkers aimed at overcoming the limitations of conventional male fertility analysis tools. However, further studies are needed for the field application of these methods. Therefore, alternative methods based on existing semen analysis methods are required to improve production efficiency in the animal industry. METHODS: we examined the possibility of improving litter size in various pig breeds using combined Hoechst 33258/chlortetracycline fluorescence (H33258/CTC) staining. The correlation between field fertility and capacitation status by combined H33258/CTC staining in different ejaculates spermatozoa (n = 3) from an individual boar (20 Landrace, 20 Yorkshire, and 20 Duroc) was evaluated as well as overall accuracy. RESULTS: The acrosome reacted (AR) pattern after capacitation (%) was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 75%, 75%, and 70% in Landrace, Yorkshire, and Duroc pigs, respectively. The difference (Δ) in AR pattern before and after capacitation was positively correlated with the litter size of Landrace, Yorkshire, and Duroc pigs and the overall accuracy was 80%, 65%, and 55% in Landrace, Yorkshire, and Duroc pigs, respectively. However, the difference (Δ) in capacitated (B) pattern before and after capacitation was negatively correlated with the litter size of Landrace pigs and the overall accuracy was 75%. Moreover, average litter size was significantly altered according to different combined H33258/CTC staining parameters. CONCLUSION: These results show that combined H33258/CTC staining may be used to predict male fertility in various breeds. However, the selection of specific efficiency combined H33258/CTC staining parameters requires further consideration. Taken together, these findings suggest that combined H33258/CTC staining may constitute an alternative method for predicting male fertility until such time as fertility-related biomarkers are further validated.
RESUMO
Introduction: The ongoing global expansion of salt-affected land is a significant factor, limiting the growth and yield of crops, particularly rice (Oryza sativa L). This experiment explores the mitigation of salt-induced damage in rice (cv BRRI dhan100) following the application of plant growth-promoting rhizobacteria (PGPR). Methods: Rice seedlings, at five- and six-weeks post-transplanting, were subjected to salt stress treatments using 50 and 100 mM NaCl at seven-day intervals. Bacterial cultures consisting of endophytic PGPR (Bacillus subtilis and B. aryabhattai) and an epiphytic PGPR (B. aryabhattai) were administered at three critical stages: transplantation of 42-day-old seedlings, vegetative stage at five weeks post-transplantation, and panicle initiation stage at seven weeks post-transplantation. Results: Salt stress induced osmotic stress, ionic imbalances, and oxidative damage in rice plants, with consequent negative effects on growth, decrease in photosynthetic efficiency, and changes in hormonal regulation, along with increased methylglyoxal (MG) toxicity. PGPR treatment alleviated salinity effects by improving plant antioxidant defenses, restoring ionic equilibrium, enhancing water balance, increasing nutrient uptake, improving photosynthetic attributes, bolstering hormone synthesis, and enhancing MG detoxification. Discussion: These findings highlight the potential of PGPR to bolster physiological and biochemical functionality in rice by serving as an effective buffer against salt stress-induced damage. B. subtilis showed the greatest benefits, while both the endophytic and epiphytic B. aryabhattai had commendable effects in mitigating salt stress-induced damage in rice plants.
RESUMO
Serratia marcescens strain BTL07, which has the ability to promote growth and suppress plant diseases, was isolated from the rhizoplane of a chili plant. The draft genome sequence data of the strain will contribute to advancing our understanding of the molecular mechanisms underlying plant growth promotion and tolerance to different stresses.
RESUMO
The evaluation of infertility in males consists of physical examination and semen analyses. Standardized semen analyses depend on the descriptive analysis of sperm motility, morphology, and concentration, with a threshold level that must be surpassed to be considered a fertile spermatozoon. Nonetheless, these conventional parameters are not satisfactory for clinicians since 25% of infertility cases worldwide remain unexplained. Therefore, newer tests methods have been established to investigate sperm physiology and functions by monitoring characteristics such as motility, capacitation, the acrosome reaction, reactive oxygen species, sperm DNA damage, chromatin structure, zona pellucida binding, and sperm-oocyte fusion. After the introduction of intracytoplasmic sperm injection technique, sperm maturity, morphology, and aneuploidy conditions have gotten more attention for investigating unexplained male infertility. In the present article, recent advancements in research regarding the utilization of male fertility prediction tests and their role and accuracy are reviewed.
RESUMO
Aminopeptidase N (APN) is defined as a multifunctional enzyme, which regulate cellular physiology of a wide variety of cells in human. Earlier studies reported that mammalian semen shares this common enzyme as a major protein of seminal plasma that has correlation with male fertility, while the regulatory mechanisms of APN in spermatozoa are still far from being well understood. Present study was designed to investigate the role of APN in biological and chemical functions of spermatozoa using an in vitro antagonistic approach. Results showed that lower APN activity in sperm culture medium significantly increased sperm motility and the percentage of high speed spermatozoa and decreased the percentage of slow speed spermatozoa after a dose dependent inhibitor treatment (10, 100, and 1000⯵M leuhistin) on epididymal mouse spermatozoa in a capacitating media for 90â¯min. Both 100⯵M and 1000⯵M decreased APN activity, while only 1000⯵M decreased cell viability and increased PKA activity significantly compared to control. Nonetheless capacitation status, acrosome reaction status, and lactate dehydrogenase activity were not affected. Intriguingly, the treatment affected embryonic development through decreasing tyrosine phosphorylation of proteins and increasing reactive oxygen species levels. Further in silico analysis revealed associated regulatory proteins, which have critical functional role for male fertility.
Assuntos
Antígenos CD13/fisiologia , Fertilidade/fisiologia , Espermatozoides/fisiologia , Reação Acrossômica/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Antígenos CD13/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fertilização in vitro/efeitos dos fármacos , Imidazóis/farmacologia , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Sêmen/enzimologia , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacosRESUMO
Aminopeptidase N (APN) is a naturally occurring ectopeptidase present in mammalian semen. Previous studies have demonstrated that APN adversely affects male fertility through the alteration of sperm motility. This enzyme constitutes 0.5 to 1% of the seminal plasma proteins, which can be transferred from the prostasomes to sperms by a fusion process. In the present study, we investigated the molecular mechanism of action of APN and its role in regulating sperm functions and male fertility. In this in vitro study, epididymal mouse spermatozoa were incubated in a capacitating media (pH 7) containing 20 ng/mL of recombinant mouse APN for 90 min. Our results demonstrated that the supplementation of recombinant APN in sperm culture medium significantly increased APN activity, and subsequently altered motility, hyperactivated motility, rapid and medium swimming speeds, viability, and the acrosome reaction of mouse spermatozoa. These effects were potentially caused by increased toxicity in the spermatozoa. Further, altered APN activity in sperm culture medium affected early embryonic development. Interestingly, the effect of elevated APN activity in sperm culture medium was independent of protein tyrosine phosphorylation and protein kinase A activity. On the basis of these results, we concluded that APN plays a significant role in the regulation of several sperm functions and early embryonic development. In addition, increased APN activity could potentially lead to several adverse consequences related to male fertility.
Assuntos
Antígenos CD13/genética , Desenvolvimento Embrionário/genética , Espermatozoides/enzimologia , Acrossomo/enzimologia , Animais , Antígenos CD13/química , Antígenos CD13/metabolismo , Infertilidade Masculina/enzimologia , Infertilidade Masculina/genética , Masculino , Camundongos , Sêmen/enzimologia , Motilidade dos Espermatozoides/genéticaRESUMO
Peroxiredoxins (PRDXs) are important antioxidant enzymes reported to have a role in sperm function and male fertility. However, how PRDXs affects male fertility remain fundamental unanswered questions. We therefore sought to investigate the role of these enzymes in sperm function and fertilisation. In this in vitro trial, mouse spermatozoa were incubated with different concentrations of conoidin A (1, 10, or 100 µM), a specific inhibitor of PRDXs. Our results demonstrated that inhibition of PRDXs by conoidin A significantly decreased the oxidized form of peroxiredoxins (PRDXs-SO3) in spermatozoa. Decreased PRDX activity was associated with a significant reduction in sperm motility parameters, viability, and intracellular ATP, whereas ROS levels, DNA fragmentation, and loss of mitochondrial membrane potential were increased. Simultaneously capacitation and the acrosome reaction were also significantly inhibited perhaps as a consequence of decreased tyrosine phosphorylation and protein kinase-A activity. In addition, fertilisation and early embryonic development were adversely affected following PRDXs inhibition in spermatozoa. Taken together, our data demonstrate that decreased PRDX activity directly affects male fertility due to negative effects on important functions and biochemical properties of spermatozoa, ultimately leading to poor fertilisation and embryonic development.