RESUMO
This research deals with the synthesis of copoly(methylvinyl)(dimethyl)siloxanes by the copolycondensation of dimethyldiethoxy- and methylvinyldimethoxysilane in an active medium, followed by thermal condensation in a vacuum. We achieved a range of copolymers exhibiting finely tuned molecular weights spanning between 1500 and 20,000 with regulated functional methylvinylsiloxane units. Analysis of the microstructure showed that the copolymerization predominantly formed products demonstrating a random distribution of units (R~1). However, an increase in the content of vinyl-containing monomers increases the R parameter, indicating an enhanced tendency towards alternating linkages within the copolymer matrix.
RESUMO
This paper reports a method for the synthesis of 1,1,3,3,5,5-hexamethyl-7,7-diorganocyclotetrasiloxanes by the interaction of 1,5-disodiumoxyhexamethylsiloxane with dichlorodiorganosilanes such as methyl-, methylvinyl-, methylphenyl-, diphenyl- and diethyl dichlorosilanes. Depending on the reaction conditions, the preparative yield of the target cyclotetrasiloxanes is 55-75%. Along with mixed cyclotetrasiloxanes, the proposed method leads to the formation of polymers with regular alternation of diorganosylil and dimethylsylil units. For example, in the case of dichlorodiethylsilane, 70% content of linear poly(diethyl)dimethylsiloxanes with regular alternation of units can be achieved in the reaction product. Using 7,7-diethyl-1,1,3,3,5,5-hexamethylcyclotetrasiloxane as an example, the prospects of the mixed cycle in copolymer preparation in comparison with the copolymerization of octamethyl- and octaethylcyclotetrasiloxanes are shown.