Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Annu Rev Anal Chem (Palo Alto Calif) ; 10(1): 141-156, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301752

RESUMO

The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.

2.
J Am Soc Mass Spectrom ; 27(4): 578-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26744293

RESUMO

In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26, 1633-1640, 2015), Russell et al. (J. Am. Soc. Mass Spectrom. 26, 248-256, 2015). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.

3.
J Am Soc Mass Spectrom ; 23(2): 418-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22161575

RESUMO

We report on the preliminary testing of a new position-sensitive detector (PSD) by combining a microchannel plate (MCP) and a charge-sensitive pixilated anode with a direct readout based on charge-coupled detector (CCD) technology, which will be referred to as IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612-623, 2011; Johnson et al. J Am Soc Mass Spectrom 22(8):1388-1394, 2011; Hadjar et al. J Am Soc Mass Spectrom 22(10):1872-1884, 2011). This work exploits the recently discovered electron detection capability of the IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612-623, 2011), allowing it to be used directly behind an MC. This MCP-IonCCD configuration potentially obviates the need for electro-optical ion detector systems (EOIDs), which typically feature a relatively difficult-to-implement 5-kV power source as well as a phosphorus screen behind the MCP for conversion of electrons to photons prior to signal generation in a photosensitive CCD. Thus, the new system (MCP-IonCCD) has the potential to be smaller, simpler, more robust, and more cost efficient than EOID-based technologies in many applications. The use of the IonCCD as direct MCP readout anode, as opposed to its direct use as an ion detector, will benefit from the instant three-to-four-order-of-magnitude gain of the MCP with virtually no additional noise. The signal/noise gain can be used for either sensitivity or speed enhancement of the detector. The speed enhancement may motivate the development of faster IonCCD readout speeds (currently at 2.7 ms) to achieve the 2 kHz frame rate for which the IonCCD chip was designed, a must for transient signal applications. The presented detector exhibits clear potential not only as a trace analysis detector in scan-free mass spectrometry and electron spectroscopy but also as a compact detector for photon and particle imaging applications.

4.
J Am Soc Mass Spectrom ; 22(10): 1872-84, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952900

RESUMO

A recently described ion charge coupled device detector IonCCD (Sinha and Wadsworth, Rev. Sci. Instrum. 76(2), 2005; Hadjar, J. Am. Soc. Mass Spectrom. 22(4), 612-624, 2011) is implemented in a miniature mass spectrometer of sector-field instrument type and Mattauch-Herzog (MH)-geometry (Rev. Sci. Instrum. 62(11), 2618-2620, 1991; Burgoyne, Hieftje and Hites J. Am. Soc. Mass Spectrom. 8(4), 307-318, 1997; Nishiguchi, Eur. J. Mass Spectrom. 14(1), 7-15, 2008) for simultaneous ion detection. In this article, we present first experimental evidence for the signature of energy loss the detected ion experiences in the detector material. The two energy loss processes involved at keV ion kinetic energies are electronic and nuclear stopping. Nuclear stopping is related to surface modification and thus damage of the IonCCD detector material. By application of the surface characterization techniques atomic force microscopy (AFM) and X-ray photoelectrons spectroscopy (XPS), we could show that the detector performance remains unaffected by ion impact for the parameter range observed in this study. Secondary electron emission from the (detector) surface is a feature typically related to electronic stopping. We show experimentally that the properties of the MH-mass spectrometer used in the experiments, in combination with the IonCCD, are ideally suited for observation of these stopping related secondary electrons, which manifest in reproducible artifacts in the mass spectra. The magnitude of the artifacts is found to increase linearly as a function of detected ion velocity. The experimental findings are in agreement with detailed modeling of the ion trajectories in the mass spectrometer. By comparison of experiment and simulation, we show that a detector bias retarding the ions or an increase of the B-field of the IonCCD can efficiently suppress the artifact, which is necessary for quantitative mass spectrometry.

5.
J Am Soc Mass Spectrom ; 22(4): 612-23, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21472600

RESUMO

A novel, low-cost, pixel-based detector array (described elsewhere Sinha and Wadsworth (76(2), 1) is examined using different charged particles, from electrons to hyperthermal (<100 eV) large biomolecular positive and negative ions, including keV small atomic and molecular ions. With this in mind, it is used in instrumentation design (beam profiling), mass spectrometry, and electron spectroscopy. The array detector is a modified light-sensitive charge-coupled device (CCD) that was engineered for direct charged-particle detection by replacing the semiconductor part of the CCD pixel with a conductor Sinha and Wadsworth (76(2), 1). The device is referred to as the IonCCD. For the first time, we show the direct detection of 250-eV electrons, providing linearity response of the IonCCD to the electron beam current. We demonstrate that the IonCCD detection efficiency is virtually independent from the particle energy (250 eV, 1250 eV), impact angle (45(o), 90(o)) and flux. By combining the IonCCD with a double-focusing sector field mass spectrometer (MS) of Mattauch-Herzog geometry (MH-MS), we demonstrate fast data acquisition. Detection of hyperthermal biomolecular ions produced using an electrospray ionization source (ESI) is also presented. In addition, the IonCCD was used as a beam profiler to characterize the beam shape and intensity of 15 eV protonated and deprotonated biomolecular ions at the exit of an rf-only collisional quadrupole. This demonstrates an ion-beam profiling application for instrument design. Finally, we present simultaneous detection of 140 eV doubly protonated biomolecular ions when the IonCCD is combined with the MH-MS. This demonstrates the possibility of simultaneous separation and micro-array deposition of biological material using a miniature MH-MS.


Assuntos
Análise em Microsséries/instrumentação , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Ar/análise , Testes Respiratórios , Elétrons , Gramicidina/química , Íons/química , Substância P/química , Temperatura
6.
Talanta ; 64(4): 961-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18969697

RESUMO

The mass spectrometer developments and underwater deployments described in this work are directed toward observations of important reactive and influential inorganic and organic chemicals. Mass spectrometer systems for measurement of dissolved gases and volatile hydrocarbons were created by coupling a membrane analyte-introduction system with linear quadrupole and ion trap mass analyzers. For molecular masses up to 100amu, the in situ quadrupole system has detection limits on the order of 1-5ppb. For masses up to approximately 300amu, the underwater ion trap system detects many volatile hydrocarbons at concentrations below 1ppb. Both instruments can function autonomously or via interactive communications from a remote control site. Continuous operations can be sustained for up to approximately 12 days. Deployments have initially involved shallow water proof-of-concept operations at depths less than 30m. Future modifications are planned that will allow operational depths to 200m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA