Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 548(7669): 592-596, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28858313

RESUMO

Induced pluripotent stem cells (iPS cells) are a promising source for a cell-based therapy to treat Parkinson's disease (PD), in which midbrain dopaminergic neurons progressively degenerate. However, long-term analysis of human iPS cell-derived dopaminergic neurons in primate PD models has never been performed to our knowledge. Here we show that human iPS cell-derived dopaminergic progenitor cells survived and functioned as midbrain dopaminergic neurons in a primate model of PD (Macaca fascicularis) treated with the neurotoxin MPTP. Score-based and video-recording analyses revealed an increase in spontaneous movement of the monkeys after transplantation. Histological studies showed that the mature dopaminergic neurons extended dense neurites into the host striatum; this effect was consistent regardless of whether the cells were derived from patients with PD or from healthy individuals. Cells sorted by the floor plate marker CORIN did not form any tumours in the brains for at least two years. Finally, magnetic resonance imaging and positron emission tomography were used to monitor the survival, expansion and function of the grafted cells as well as the immune response in the host brain. Thus, this preclinical study using a primate model indicates that human iPS cell-derived dopaminergic progenitors are clinically applicable for the treatment of patients with PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Medicina Regenerativa/métodos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proliferação de Células , Sobrevivência Celular , Neurônios Dopaminérgicos/imunologia , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/citologia , Movimento , Neostriado/citologia , Neuritos , Doença de Parkinson/etiologia , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo
2.
J Neurosci Res ; 98(8): 1575-1587, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32506530

RESUMO

The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%-2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse-induced pluripotent stem (iPS) cell-derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT-and NTRK-like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human-iPS cell-derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/transplante , Zonisamida/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Ratos , Ratos Endogâmicos F344
3.
J Neurosci Res ; 95(9): 1829-1837, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28233934

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) are a promising source for cell transplantation therapy. In Parkinson's disease (PD) patients, however, their vulnerability and the transmission of pathological α-Synuclein are possible drawbacks that may prevent PD-specific iPSCs (PDiPSCs) from being used in clinical settings. In this study, we generated iPSCs from idiopathic PD patients and found that there was no significant vulnerability between dopaminergic (DA) neurons generated from healthy individuals and idiopathic PD patients. PDiPSC-derived DA neurons survived and functioned in the brains of PD model rats. In addition, in the brains of α-Synuclein transgenic mice, PDiPSC-derived DA neurons did not cause pathological α-Synuclein accumulation in the host brain or in the grafts. These results suggested that iPSCs derived from idiopathic PD patients are feasible as donor cells for autologous transplantation to treat PD. © 2017 Wiley Periodicals, Inc.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Doença de Parkinson , Adulto , Idoso , Animais , Feminino , Xenoenxertos , Humanos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco/métodos
4.
Dev Biol ; 397(2): 151-61, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25446539

RESUMO

Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/fisiologia , Gônadas/embriologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Movimento Celular/genética , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Gônadas/citologia , Imuno-Histoquímica , Modelos Biológicos , Mutação/genética , Plasmídeos/genética , Interferência de RNA , Proteínas rac de Ligação ao GTP/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-39340829

RESUMO

Cerebral organoids (COs) in cell replacement therapy offer a viable approach to reconstructing neural circuits for individuals suffering from stroke or traumatic brain injuries. Successful transplantation relies on effective engraftment and neurite extension from the grafts. Earlier research has validated the effectiveness of delaying the transplantation procedure by 1 week. Here, we hypothesized that brain tissues 1 week following a traumatic brain injury possess a more favorable environment for cell transplantation when compared to immediately after injury. We performed a transcriptomic comparison to differentiate gene expression between these 2 temporal states. In controlled in vitro conditions, recombinant human progranulin (rhPGRN) bolstered the survival rate of dissociated neurons sourced from human induced pluripotent stem cell-derived COs (hiPSC-COs) under conditions of enhanced oxidative stress. This increase in viability was attributable to a reduction in apoptosis via Akt phosphorylation. In addition, rhPGRN pretreatment before in vivo transplantation experiments augmented the engraftment efficiency of hiPSC-COs considerably and facilitated neurite elongation along the host brain's corticospinal tracts. Subsequent histological assessments at 3 months post-transplantation revealed an elevated presence of graft-derived subcerebral projection neurons-crucial elements for reconstituting neural circuits-in the rhPGRN-treated group. These outcomes highlight the potential of PGRN as a neurotrophic factor suitable for incorporation into hiPSC-CO-based cell therapies.

6.
Stem Cells ; 30(5): 935-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328536

RESUMO

For the safe clinical application of embryonic stem cells (ESCs) for neurological diseases, it is critical to evaluate the tumorigenicity and function of human ESC (hESC)-derived neural cells in primates. We have herein, for the first time, compared the growth and function of hESC-derived cells with different stages of neural differentiation implanted in the brains of primate models of Parkinson's disease. We herein show that residual undifferentiated cells expressing ESC markers present in the cell preparation can induce tumor formation in the monkey brain. In contrast, a cell preparation matured by 42-day culture with brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor (BDNF/GDNF) treatment did not form tumors and survived as primarily dopaminergic (DA) neurons. In addition, the monkeys with such grafts showed behavioral improvement for at least 12 months. These results support the idea that hESCs, if appropriately matured, can serve as a source for DA neurons without forming any tumors in a primate brain.


Assuntos
Técnicas de Cultura de Células , Transformação Celular Neoplásica , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Haplorrinos , Humanos , Intoxicação por MPTP/patologia , Intoxicação por MPTP/terapia , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neurais/patologia , Transplante de Células-Tronco , Transplante Heterólogo
7.
Stem Cell Reports ; 18(4): 899-914, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36963389

RESUMO

Cell replacement therapy is expected as a new and more radical treatment against brain damage. We previously reported that transplanted human cerebral organoids extend their axons along the corticospinal tract in rodent brains. The axons reached the spinal cord but were still sparse. Therefore, this study optimized the host brain environment by the adeno-associated virus (AAV)-mediated expression of axon guidance proteins in mouse brain. Among netrin-1, SEMA3, and L1CAM, only L1CAM significantly promoted the axonal extension of mouse embryonic brain tissue-derived grafts. L1CAM was also expressed by donor neurons, and this promotion was exerted in a haptotactic manner by their homophilic binding. Primary cortical neurons cocultured on L1CAM-expressing HEK-293 cells supported this mechanism. These results suggest that optimizing the host environment by the AAV-mediated expression of axon guidance molecules enhances the effect of cell replacement therapy.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Humanos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Molécula L1 de Adesão de Célula Nervosa/farmacologia , Células HEK293 , Axônios/metabolismo , Tratos Piramidais , Encéfalo/metabolismo , Netrina-1/metabolismo , Netrina-1/farmacologia
8.
iScience ; 26(11): 108147, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876803

RESUMO

The emergence and spread of new SARS-CoV-2 variants with mutations in the spike protein, such as the XBB.1.5 and XBB.1.9.1 sublineages, raise concerns about the efficacy of current COVID-19 vaccines and therapeutic monoclonal antibodies (mAbs). In this study, none of the mAbs we tested neutralized XBB.1.9.1 or XBB.1.5, even at the highest concentration used. We also found that the bivalent mRNA vaccine could enhance humoral immunity against XBB.1.9.1, but that XBB.1.9.1 and XBB.1.5 still evaded humoral immunity induced by vaccination or infection. Moreover, the susceptibility of XBB.1.9.1 to remdesivir, molnupiravir, nirmatrelvir, and ensitrelvir was similar to that of the ancestral strain and the XBB.1.5 isolate in vitro. Finally, we found the replicative fitness of XBB.1.9.1 to be similar to that of XBB.1.5 in hamsters. Our results suggest that XBB.1.9.1 and XBB.1.5 have similar antigenicity and replicative ability, and that the currently available COVID-19 antivirals remain effective against XBB.1.9.1.

9.
J Parkinsons Dis ; 12(3): 871-884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958047

RESUMO

BACKGROUND: Pluripotent stem cell (PSC)-derived dopaminergic (DA) neurons are an expected source of cell therapy for Parkinson's disease. The transplantation of cell aggregates or neurospheres, instead of a single cell suspension has several advantages, such as keeping the 3D structure of the donor cells and ease of handling. For this PSC-based therapy to become a widely available treatment, cryopreservation of the final product is critical in the manufacturing process. However, cryopreserving cell aggregates is more complicated than cryopreserving single cell suspensions. Previous studies showed poor survival of the DA neurons after the transplantation of cryopreserved fetal ventral-mesencephalic tissues. OBJECTIVE: To achieve the cryopreservation of induced pluripotent stem cell (iPSC)-derived DA neurospheres toward clinical application. METHODS: We cryopreserved iPSC-derived DA neurospheres in various clinically applicable cryopreservation media and freezing protocols and assessed viability and neurite extension. We evaluated the population and neuronal function of cryopreserved cells by the selected method in vitro. We also injected the cells into 6-hydroxydopamine (6-OHDA) lesioned rats, and assessed their survival, maturation and function in vivo. RESULTS: The iPSC-derived DA neurospheres cryopreserved by Proton Freezer in the cryopreservation medium Bambanker hRM (BBK) showed favorable viability after thawing and had equivalent expression of DA-specific markers, dopamine secretion, and electrophysiological activity as fresh spheres. When transplanted into 6-OHDA-lesioned rats, the cryopreserved cells survived and differentiated into mature DA neurons, resulting in improved abnormal rotational behavior. CONCLUSION: These results show that the combination of BBK and Proton Freezer is suitable for the cryopreservation of iPSC-derived DA neurospheres.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Animais , Diferenciação Celular , Criopreservação/métodos , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/terapia , Ratos
10.
J Neurosci Res ; 89(2): 117-26, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21162120

RESUMO

The balance of bone morphogenic protein (BMP), transforming growth factor-ß (TGFß)/activin/nodal, and Wnt signals regulates the early lineage segregation of human embryonic stem cells (ESCs). Here we demonstrate that a combination of small-molecule inhibitors of BMP (Dorsomorphin) and TGFß/activin/nodal (SB431542) signals promotes highly efficient neural induction from both human ESCs and induced pluripotent stem cells (iPSCs). The combination of small molecules had effects on both cell survival and purity of neural differentiation, under conditions of stromal (PA6) cell coculture and feeder-free floating aggregation culture, for all seven pluripotent stem cell lines that we studied, including three ESC and four iPSC lines. Small molecule compounds are stable and cost effective, so our findings provide a promising strategy for controlled production of neurons in regenerative medicine.


Assuntos
Ativinas/antagonistas & inibidores , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Proteína Nodal/antagonistas & inibidores , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Dioxóis/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Stem Cell Reports ; 15(2): 467-481, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32679062

RESUMO

The reconstruction of lost neural circuits by cell replacement is a possible treatment for neurological deficits after cerebral cortex injury. Cerebral organoids can be a novel source for cell transplantation, but because the cellular composition of the organoids changes along the time course of the development, it remains unclear which developmental stage of the organoids is most suitable for reconstructing the corticospinal tract. Here, we transplanted human embryonic stem cell-derived cerebral organoids at 6 or 10 weeks after differentiation (6w- or 10w-organoids) into mouse cerebral cortices. 6w-organoids extended more axons along the corticospinal tract but caused graft overgrowth with a higher percentage of proliferative cells. Axonal extensions from 10w-organoids were smaller in number but were enhanced when the organoids were grafted 1 week after brain injury. Finally, 10w-organoids extended axons in cynomolgus monkey brains. These results contribute to the development of a cell-replacement therapy for brain injury and stroke.


Assuntos
Axônios/fisiologia , Córtex Cerebral/fisiologia , Organoides/transplante , Tratos Piramidais/fisiologia , Animais , Proliferação de Células , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , Macaca fascicularis , Masculino , Camundongos SCID , Neovascularização Fisiológica
12.
Nat Commun ; 11(1): 4854, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978383

RESUMO

Chronic imaging of neuronal networks in vitro has provided fundamental insights into mechanisms underlying neuronal function. Current labeling and optical imaging methods, however, cannot be used for continuous and long-term recordings of the dynamics and evolution of neuronal networks, as fluorescent indicators can cause phototoxicity. Here, we introduce a versatile platform for label-free, comprehensive and detailed electrophysiological live-cell imaging of various neurogenic cells and tissues over extended time scales. We report on a dual-mode high-density microelectrode array, which can simultaneously record in (i) full-frame mode with 19,584 recording sites and (ii) high-signal-to-noise mode with 246 channels. We set out to demonstrate the capabilities of this platform with recordings from primary and iPSC-derived neuronal cultures and tissue preparations over several weeks, providing detailed morpho-electrical phenotypic parameters at subcellular, cellular and network level. Moreover, we develop reliable analysis tools, which drastically increase the throughput to infer axonal morphology and conduction speed.


Assuntos
Rede Nervosa/fisiologia , Neurônios/fisiologia , Imagem Óptica/métodos , Análise de Célula Única/métodos , Animais , Axônios , Encéfalo , Células Cultivadas , Células-Tronco Pluripotentes Induzidas , Camundongos , Microeletrodos , Modelos Animais , Rede Nervosa/diagnóstico por imagem , Imagem Óptica/instrumentação , Ratos , Ratos Wistar , Gravação em Vídeo
13.
Nat Commun ; 11(1): 3369, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632153

RESUMO

Induced pluripotent stem cell (iPSC)-derived dopaminergic (DA) neurons are an expected source for cell-based therapies for Parkinson's disease (PD). The regulatory criteria for the clinical application of these therapies, however, have not been established. Here we show the results of our pre-clinical study, in which we evaluate the safety and efficacy of dopaminergic progenitors (DAPs) derived from a clinical-grade human iPSC line. We confirm the characteristics of DAPs by in vitro analyses. We also verify that the DAP population include no residual undifferentiated iPSCs or early neural stem cells and have no genetic aberration in cancer-related genes. Furthermore, in vivo studies using immunodeficient mice reveal no tumorigenicity or toxicity of the cells. When the DAPs are transplanted into the striatum of 6-OHDA-lesioned rats, the animals show behavioral improvement. Based on these results, we started a clinical trial to treat PD patients in 2018.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/transplante , Doença de Parkinson/terapia , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular/genética , Linhagem Celular , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca fascicularis , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Ratos Nus , Transplante Heterólogo
14.
iScience ; 22: 81-96, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756626

RESUMO

Crosstalk between immunity and the thermogenic program has provided insight into metabolic energy regulation. Here, we generated thermogenic program-accelerating mice (T-QKO), in which Foxo1 is knockout and Foxo3 is hetero-knockout in CD4+ T cells. T-QKO exhibit lean phenotype under HFD due to increased energy expenditure. Cold exposure significantly increased expression of the thermogenic genes (Ppargc1a and Ucp1), Th2 cytokines (Il4 and Il13), and Th2 marker gene (Gata3) in subcutaneous adipose tissue (SC) of T-QKO. Furthermore, Ccr4 expression was significantly increased in Th2 cells of T-QKO, and cold exposure induced Ccl22 expression in SC, leading to increased accumulation of Th2 cell population in SC of T-QKO. These data reveal a mechanism by which cold exposure induces selective recruitment of Th2 cells into SC, leading to regulation of energy expenditure by generating beige adipocyte and suggest that inhibition of Foxo in T cells may support a strategy to prevent and treat obesity.

15.
NPJ Regen Med ; 4: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231547

RESUMO

Cell-based therapies are attracting attention as alternative therapeutic options for brain damage. In this study, we investigated the therapeutic effect of a combined therapy of cell transplantation and locomotor training by evaluating the neuronal connectivity. We transplanted neural cells derived from the frontal cortex of E14.5 GFP-expressing mice into the frontal lobe of 3-week-old rats with brain injury, followed by treadmill training (TMT) for 14 days. In the TMT(-) group, graft-derived neurites were observed only in the striatum and internal capsule. In contrast, in the TMT(+) group, they were observed in the striatum, internal capsule, and the cerebral peduncle and spinal cord. The length of the longest neurite was significantly longer in the TMT(+) group than in the TMT(-) group. In the TMT(+) group, Synaptophysin+ vesicles on the neuronal fibers around the ipsilateral red nucleus were found, suggesting that neuronal fibers from the grafted cells formed synapses with the host neurons. A functional analysis of motor recovery using the foot fault test showed that, 1 week after the transplantation, the recovery was significantly better in the cell transplantation and TMT group than the cell transplantation only group. The percentage of cells expressing C-FOS was increased in the grafts in the TMT(+) group. In conclusion, TMT promoted neurite extensions from the grafted neural cells, and the combined therapy of cell transplantation and locomotor training might have the potential to promote the functional recovery of rats with brain injury compared to cell transplantation alone.

16.
No Shinkei Geka ; 36(7): 625-31, 2008 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-18634405

RESUMO

We report a rare case of spontaneous intracranial carotid artery dissection presenting with multiple infarctions. A 65-year-old man became aware of transient visual disturbance in the right eye and headache. Magnetic resonance imaging (MRI) at a local neurosurgical clinic depicted fresh multiple infarctions of the right cerebral hemisphere along with severe right carotid artery stenosis and delayed cerebral blood flow on the right side. The patient was transferred to our hospital. Three-dimensional computed tomography (3D-CT) showed an intimal flap in the righ petrous internal carotid artery and we diagnosed spontaneous intracranial carotid artery dissection of the petrous portion. We started conservative therapy including anti-coagulant and antiplatelet drug and blood pressure control. Two weeks after admission, angiography, 3D-CT, MR angiography demonstrated that the dissection had improved and the patient was discharged without neurological deficit. In this case, 3D-CT was effective for the diagnosis of intracranial carotid artery dissection. We report this rare case along with a literature review of the clinical profile and related neuroimaging findings.


Assuntos
Dissecação da Artéria Carótida Interna/diagnóstico , Idoso , Dissecação da Artéria Carótida Interna/fisiopatologia , Humanos , Imageamento Tridimensional , Masculino , Remissão Espontânea , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA