Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(7): 4306-4313, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31192615

RESUMO

The remarkable electronic and mechanical properties of nanowires have great potential for fascinating applications; however, the difficulties of assembling ordered arrays of aligned nanowires over large areas prevent their integration into many practical devices. In this paper, we show that aligned VO2 nanowires form spontaneously after heating a thin V2O5 film on a grooved SiO2 surface. Nanowires grow after complete dewetting of the film, after which there is the formation of supercooled nanodroplets and subsequent Ostwald ripening and coalescence. We investigate the growth mechanism using molecular dynamics simulations of spherical Lennard-Jones particles, and the simulations help explain how the grooved surface produces aligned nanowires. Using this simple synthesis approach, we produce self-aligned, millimeter-long nanowire arrays with uniform metal-insulator transition properties; after their transfer to a polymer substrate, the nanowires act as a highly sensitive array of strain sensors with a very fast response time of several tens of milliseconds.

2.
Phys Rev E ; 101(3-1): 032705, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289982

RESUMO

The effect of confinement on the behavior of liquid crystals is interesting from a fundamental and practical standpoint. In this work, we report Monte Carlo simulations of hard rods in an array of hard nanoposts, where the surface-to-surface separations between nanoposts are comparable to or less than the length of hard rods. This particular system shows promise as a means of generating large-scale organization of the nematic liquid by introducing an entropic external field set by the alignment of nanoposts. The simulations show that nematic ordering of hard rods is enhanced in the nanopost arrays compared with that in bulk, in the sense that the nematic order is significant even at low concentrations at which hard rods remain isotropic in bulk, and the enhancement becomes more significant as the passage width between two nearest nanoposts decreases. An analysis of local distribution of hard-rod orientations at low concentrations with weak nematic ordering reveals that hard rods are preferentially aligned along nanoposts in the narrowing regions between two curved surfaces of nearest nanoposts; hard rods are less ordered in the passages and in the centers of interpost spaces. It is concluded that at low concentrations the confinement in a dense array of nanoposts induces the localized nematic order first in the narrowing regions and, as the concentration further increases, the nematic order spreads over the whole region. The formation of a well-ordered phase at low concentrations of hard rods in a dense array of nanoposts can provide a new route to the low-concentration preparation of nematic liquid crystals that can be used as anisotropic dispersion media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA