Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Allergy Clin Immunol ; 152(5): 1179-1195, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315812

RESUMO

BACKGROUND: Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES: This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS: Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS: At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS: Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.


Assuntos
Dermatite Atópica , Infecções Estafilocócicas , Humanos , Dermatite Atópica/genética , Staphylococcus aureus , Anticorpos Monoclonais Humanizados/uso terapêutico , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do Tratamento
2.
BMC Pediatr ; 23(1): 108, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882717

RESUMO

BACKGROUND: We describe a case of a toxic shock-like syndrome in a child, which was associated with Staphylococcus epidermidis instead of Staphylococcus aureus or Streptococcus pyogenes, the usual causes of toxic shock syndrome. CASE PRESENTATION: The patient was an 8-year-old boy who developed a toxic shock syndrome-like illness, including fever, hypotension, and rash. The Staphylococcus epidermidis isolate was cultured from urine, but this organism was unavailable for toxin testing. Multiple blood cultures were negative. Instead, a highly novel assay was used on acute plasma from the patient which demonstrated the presence of the genes for superantigens, staphylococcal enterotoxins A, C, D, and E. Superantigens are the known causes of toxic shock syndrome. CONCLUSIONS: Our study suggests strongly that Staphylococcus epidermidis was causing the TSS symptoms through the known Staphylococcus aureus superantigens. It is unknown how many other such patients exist; this should be explored. Of great importance is that PCR performed directly on blood plasma in the absence of microbial isolation could be used to demonstrate superantigen genes.


Assuntos
Exantema , Choque Séptico , Infecções Estafilocócicas , Masculino , Criança , Humanos , Enterotoxinas/genética , Staphylococcus epidermidis , Superantígenos/genética , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus
3.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
4.
Microbiol Spectr ; 11(4): e0173523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404182

RESUMO

Staphylococcus aureus is a human pathogen with many infections originating on mucosal surfaces. One common group of S. aureus is the USA200 (CC30) clonal group, which produces toxic shock syndrome toxin-1 (TSST-1). Many USA200 infections occur on mucosal surfaces, particularly in the vagina and gastrointestinal tract. This allows these organisms to cause cases of menstrual TSS and enterocolitis. The current study examined the ability of two lactobacilli, Lactobacillus acidophilus strain LA-14 and Lacticaseibacillus rhamnosus strain HN001, for their ability to inhibit the growth of TSST-1 positive S. aureus, the production of TSST-1, and the ability of TSST-1 to induce pro-inflammatory chemokines from human vaginal epithelial cells (HVECs). In competition growth experiments, L. rhamnosus did not affect the growth of TSS S. aureus but did inhibit the production of TSST-1; this effect was partially due to acidification of the growth medium. L. acidophilus was both bactericidal and prevented the production of TSST-1 by S. aureus. This effect appeared to be partially due to acidification of the growth medium, production of H2O2, and production of other antibacterial molecules. When both organisms were incubated with S. aureus, the effect of L. acidophilus LA-14 dominated. In in vitro experiments with HVECs, neither lactobacillus induced significant production of the chemokine interleukin-8, whereas TSST-1 did induce production of the chemokine. When the lactobacilli were incubated with HVECs in the presence of TSST-1, the lactobacilli reduced chemokine production. These data suggest that these two bacteria in probiotics could reduce the incidence of menstrual and enterocolitis-associated TSS. IMPORTANCE Toxic shock syndrome (TSS) Staphylococcus aureus commonly colonize mucosal surfaces, giving them the ability to cause TSS through the action of TSS toxin-1 (TSST-1). This study examined the ability of two probiotic lactobacilli to inhibit S. aureus growth and TSST-1 production, and the reduction of pro-inflammatory chemokine production by TSST-1. Lacticaseibacillus rhamnosus strain HN001 inhibited TSST-1 production due to acid production but did not affect S. aureus growth. Lactobacillus acidophilus strain LA-14 was bactericidal against S. aureus, partially due to acid and H2O2 production, and consequently also inhibited TSST-1 production. Neither lactobacillus induced the production of pro-inflammatory chemokines by human vaginal epithelial cells, and both inhibited chemokine production by TSST-1. These data suggest that the two probiotics could reduce the incidence of mucosa-associated TSS, including menstrual TSS and cases originating as enterocolitis.


Assuntos
Probióticos , Choque Séptico , Infecções Estafilocócicas , Feminino , Humanos , Staphylococcus aureus , Choque Séptico/prevenção & controle , Choque Séptico/microbiologia , Lactobacillus/fisiologia , Peróxido de Hidrogênio/farmacologia , Enterotoxinas , Quimiocinas , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia
5.
mSphere ; 8(1): e0057622, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36598227

RESUMO

Innate immune molecules, including antimicrobial peptides (for example, defensins) and lysozyme, function to delay or prevent bacterial infections. These molecules are commonly found on mucosal and skin surfaces. Staphylococcus aureus is a common pathogen and causes millions of infections annually. It is well known that innate immune molecules, such as defensins and lysozyme, either poorly inhibit or do not inhibit the growth of S. aureus. Our current studies show that the α-defensin human neutrophil α-defensin-1 (HNP-1) and lysozyme inhibit exotoxin production, both hemolysins and superantigens, which are required for S. aureus infection. HNP-1 inhibited exotoxin production at concentrations as low as 0.001 µg/mL. Lysozyme inhibited exotoxin production at 0.05 to 0.5 µg/mL. Both HNP-1 and lysozyme functioned through at least one two-component system (SrrA/B). The ß-defensin human ß-defensin 1 (HBD-1) inhibited hemolysin but not superantigen production. The cation chelator S100A8/A9 (calprotectin), compared to EDTA, was tested for the ability to inhibit exotoxin production. EDTA at high concentrations inhibited exotoxin production; these were the same concentrations that interfered with staphylococcal growth. S100A8/A9 at the highest concentration tested (10 µg/mL) had no effect on S. aureus growth but enhanced exotoxin production. Lower concentrations had no effect on growth or exotoxin production. Lysostaphin is regularly used to lyse S. aureus. The lytic concentrations of lysostaphin were the only concentrations that also inhibited growth and exotoxin production. Our studies demonstrate that a major activity of innate defensin peptides and lysozyme is inhibition of staphylococcal exotoxin production but not inhibition of growth. IMPORTANCE Staphylococcus aureus causes large numbers of both relatively benign and serious human infections, which are mediated in large part by the organisms' secreted exotoxins. Since 1921, it has been known that lysozyme and, as shown later in the 1900s, other innate immune peptides, including human neutrophil α-defensin-1 (HNP-1) and human ß-defensin 1 (HBD-1), are either not antistaphylococcal or are only weakly inhibitory to growth. Our study confirms those findings but, importantly, shows that at subgrowth inhibitory concentrations, these positively charged innate immune peptides inhibit exotoxin production, including both hemolysins and the superantigen toxic shock syndrome toxin-1. The data show that the principal activity of innate immune peptides in the host is likely to be inhibition of exotoxin production required for staphylococcal mucosal or skin colonization rather than growth inhibition.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Exotoxinas , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Humanos , alfa-Defensinas/farmacologia , beta-Defensinas/farmacologia , Ácido Edético/farmacologia , Exotoxinas/metabolismo , Proteínas Hemolisinas/farmacologia , Lisostafina/farmacologia , Muramidase/farmacologia , Staphylococcus , Staphylococcus aureus/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia
6.
Microbiol Spectr ; 11(6): e0289823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37937984

RESUMO

IMPORTANCE: Staphylococcus aureus causes a myriad of human diseases, ranging from relatively mild soft tissue infections to highly fatal pneumonia, sepsis, and toxic shock syndrome. The organisms primarily cause diseases across mucosal and skin barriers. In order to facilitate penetration of barriers, S. aureus causes harmful inflammation by inducing chemokines from epithelial cells. We report the cloning and characterization of a novel secreted S. aureus protein that induces chemokine production from epithelial cells as its major demonstrable function. This secreted protein possibly helps S. aureus and its secreted proteins to penetrate host barriers.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Clonagem Molecular
7.
Microbiol Spectr ; 10(2): e0010622, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35297656

RESUMO

Many bacterial and fungal pathogens cause disease across mucosal surfaces, and to a lesser extent through skin surfaces. Pathogens that potentially cause disease vaginally across epithelial cells include Staphylococcus aureus, group A and B streptococci, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. We have previously shown that staphylococcal and streptococcal superantigens induce inflammatory chemokines from vaginal epithelial cells through the immune costimulatory molecule CD40 through use of a CRISPR cas9 knockout mutant and complemented epithelial cell line. In this study, we show that the potential vaginal pathogens S. aureus, group A and B streptococci, E. coli, an Enterococcus faecalis strain, and C. albicans in part use CD40 to stimulate interleukin-8 (IL-8) production from human vaginal epithelial cells. In contrast, N. gonorrhoeae does not appear to use CD40 to signal IL-8 production. Normal flora Lactobacillus crispatus and an Enterococcus faecalis strain that produces reutericyclin do not induce IL-8. These data indicate that many potential pathogens, but no normal commensals, induce IL-8 to help disrupt the human vaginal epithelial barrier through CD40, thus providing a potential therapeutic target for drug development. IMPORTANCE Most bacterial and fungal pathogens cause disease across mucosal, and to a lesser extent, skin barriers with the help of induced chemokines from epithelial cells. In this study, we showed that potential vaginal pathogens Staphylococcus aureus, group A and B streptococci, some Enterococcus faecalis strains, Escherichia coli, and Candida albicans use the immune costimulatory molecule CD40 to induce the chemokine interleukin-8 production. In contrast, Neisseria gonorrhoeae does not use CD40 to stimulate interleukin-8. Normal flora lactobacilli and at least one E. faecalis strain do not induce interleukin-8.


Assuntos
Infecções por Escherichia coli , Infecções Estafilocócicas , Candida albicans/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Staphylococcus aureus/metabolismo , Vagina/microbiologia
8.
J Invest Dermatol ; 142(4): 1032-1039.e6, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606884

RESUMO

A potential role of Staphylococcus aureus in bullous pemphigoid was explored by examining the colonization rate in patients with new-onset disease compared with that in age- and sex-matched controls. S. aureus colonization was observed in 85% of bullous pemphigoid lesions, 3-6-fold higher than the nares or unaffected skin from the same patients (P ≤ 0.003) and 6-fold higher than the nares or skin of controls (P ≤ 0.0015). Furthermore, 96% of the lesional isolates produced the toxic shock syndrome toxin-1 superantigen, and most of these additionally exhibited homogeneous expression of the enterotoxin gene cluster toxins. Toxic shock syndrome toxin-1‒neutralizing antibodies were not protective against colonization. However, S. aureus colonization was not observed in patients who had recently received antibiotics, and the addition of antibiotics with staphylococcal coverage eliminated S. aureus and resulted in clinical improvement. This study shows that toxic shock syndrome toxin-1‒positive S. aureus is prevalent in bullous pemphigoid lesions and suggests that early implementation of antibiotics may be of benefit. Furthermore, our results suggest that S. aureus colonization could provide a source of infection in patients with bullous pemphigoid, particularly in the setting of high-dose immunosuppression.


Assuntos
Penfigoide Bolhoso , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Toxinas Bacterianas , Enterotoxinas/toxicidade , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Superantígenos/genética
9.
mSphere ; 6(4): e0060821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319127

RESUMO

Atopic dermatitis (AD) is a condition affecting 30 million persons in the United States. AD patients are heavily infected with Staphylococcus aureus on the skin. A particularly severe form of AD is eczema herpeticum (ADEH), where the patients' AD is complicated by S. aureus and herpes simplex virus (HSV) infection. This study examined the S. aureus strains from 15 ADEH patients, provided blinded, and showed a high association of ADEH with strains that produce toxic shock syndrome toxin-1 (TSST-1; 73%) compared to 10% production by typical AD isolates from patients without EH and those from another unrelated condition, cystic fibrosis. The ADEH isolates produced the superantigens associated with TSS (TSST-1 and staphylococcal enterotoxins A, B, and C). This association may in part explain the potential severity of ADEH. We also examined the effect of TSST-1 and HSV-1 on human epithelial cells and keratinocytes. TSST-1 used CD40 as its receptor on epithelial cells, and HSV-1 either directly or indirectly interacted with CD40. The consequence of these interactions was chemokine production, which is capable of causing harmful inflammation, with epidermal/keratinocyte barrier disruption. Human epithelial cells treated first with TSST-1 and then HSV-1 resulted in enhanced chemokine production. Finally, we showed that TSST-1 modestly increased HSV-1 replication but did not increase viral plaque size. Our data suggest that ADEH is associated with production of the major TSS-associated superantigens, together with HSV reactivation. The superantigens plus HSV may damage the skin barrier by causing harmful inflammation, thereby leading to increased symptoms. IMPORTANCE Atopic dermatitis (eczema, AD) with concurrent herpes simplex virus infection (eczema herpeticum, ADEH) is a severe form of AD. We show that ADEH patients are colonized with Staphylococcus aureus that primarily produces the superantigen toxic shock syndrome toxin-1 (TSST-1); however, significantly but to a lesser extent the superantigens staphylococcal enterotoxins A, B, and C are also represented in ADEH. Our studies showed that TSST-1 uses the immune costimulatory molecule CD40 as its epithelial cell receptor. Herpes simplex virus (HSV) also interacted directly or indirectly with CD40 on epithelial cells. Treatment of epithelial cells with TSST-1 and then HSV-1 resulted in enhanced chemokine production. We propose that this combination of exposures (TSST-1 and then HSV) leads to opening of epithelial and skin barriers to facilitate potentially serious ADEH.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Herpesvirus Humano 1/metabolismo , Erupção Variceliforme de Kaposi/microbiologia , Staphylococcus aureus/patogenicidade , Superantígenos/genética , Superantígenos/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Antígenos CD40/imunologia , Quimiocinas/imunologia , Enterotoxinas/imunologia , Enterotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Células HaCaT , Herpesvirus Humano 1/imunologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/virologia , Staphylococcus aureus/metabolismo , Superantígenos/imunologia , Superantígenos/farmacologia
10.
Sci Rep ; 9(1): 14550, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601928

RESUMO

Human milk has antimicrobial compounds and immunomodulatory activities. We investigated glycerol monolaurate (GML) in human milk versus bovine milk and infant formula for antimicrobial and anti-inflammatory activities. Human milk contained approximately 3000 µg/ml of GML, compared to 150 µg/ml in bovine milk and none in infant formula. For bacteria tested (Staphylococcus aureus, Bacillus subtilis, Clostridium perfringens, Escherichia coli), except Enterococcus faecalis, human milk was more antimicrobial than bovine milk and formula. The Enterococcus faecalis strain, which was not inhibited, produced reutericyclin, which is an analogue of GML and functions as a growth stimulant in bacteria that produce it. Removal of GML and other lipophilic molecules from human milk by ethanol extraction resulted in a loss of antibacterial activity, which was restored by re-addition of GML. GML addition caused bovine milk to become antimicrobial. Human milk but not bovine milk or formula inhibited superantigen and bacterial-induced IL-8 production by model human epithelial cells. GML may contribute beneficially to human milk compared to bovine milk or infant formula.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Lauratos/farmacologia , Leite Humano/química , Monoglicerídeos/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bovinos , Clostridium perfringens/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Inflamação , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Ácido Tenuazônico/análogos & derivados , Ácido Tenuazônico/metabolismo
11.
Genes (Basel) ; 10(12)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842331

RESUMO

BACKGROUND: Staphylococcus aureus is a highly prevalent respiratory pathogen in cystic fibrosis (CF). It is unclear how this organism establishes chronic infections in CF airways. We hypothesized that S. aureus isolates from patients with CF would share common virulence properties that enable chronic infection. METHODS: 77 S. aureus isolates were obtained from 45 de-identified patients with CF at the University of Iowa. We assessed isolates phenotypically and used genotyping assays to determine the presence or absence of 18 superantigens (SAgs). RESULTS: We observed phenotypic diversity among S. aureus isolates from patients with CF. Genotypic analysis for SAgs revealed 79.8% of CF clinical isolates carried all six members of the enterotoxin gene cluster (EGC). MRSA and MSSA isolates had similar prevalence of SAgs. We additionally observed that EGC SAgs were prevalent in S. aureus isolated from two geographically distinct CF centers. CONCLUSIONS: S. aureus SAgs belonging to the EGC are highly prevalent in CF clinical isolates. The greater prevalence in these SAgs in CF airway specimens compared to skin isolates suggests that these toxins confer selective advantage in the CF airway.


Assuntos
Fibrose Cística/genética , Fibrose Cística/microbiologia , Staphylococcus aureus/genética , Adolescente , Adulto , Criança , Pré-Escolar , Enterotoxinas/genética , Feminino , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/genética , Família Multigênica/genética , Prevalência , Infecções Estafilocócicas/epidemiologia , Superantígenos/análise , Superantígenos/genética , Virulência
12.
mSphere ; 3(6)2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463926

RESUMO

Glycerol monolaurate is a broadly antimicrobial fatty acid monoester, killing bacteria, fungi, and enveloped viruses. The compound kills stationary-phase cultures of Bacillus anthracis, suggesting that the molecule may kill spores. In this study, we examined the ability of glycerol monolaurate alone or solubilized in a nonaqueous gel to kill vegetative cells and spores of aerobic B. anthracis, B. subtilis, and B. cereus and anaerobic Clostridium perfringens and Clostridium (Clostridioides) difficile. Glycerol monolaurate alone was bactericidal for all five organisms tested. Glycerol monolaurate alone was effective in killing spores. When solubilized in a nonaqueous gel, the glycerol monolaurate gel was bactericidal for all spores tested. The data suggest that glycerol monolaurate nonaqueous gel could be effective in decontaminating environmental and body surfaces, such as skin.IMPORTANCEBacillus and Clostridium spores are known to be highly resistant to killing, persisting on environmental and human body surfaces for long periods of time. In favorable environments, these spores may germinate and cause human diseases. It is thus important to identify agents that can be used on both environmental and human skin and mucosal surfaces and that are effective in killing spores. We previously showed that the fatty acid monoester glycerol monolaurate (GML) kills stationary-phase cultures of Bacillus anthracis Since such cultures are likely to contain spores, it is possible that GML and a human-use-approved GML nonaqueous gel would kill Bacillus and Clostridium spores. The significance of our studies is that we have identified GML, and, to a greater extent, GML solubilized in a nonaqueous gel, as effective in killing spores from both bacterial genera.


Assuntos
Antibacterianos/farmacologia , Bacillus/efeitos dos fármacos , Clostridium/efeitos dos fármacos , Géis/farmacologia , Lauratos/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Monoglicerídeos/farmacologia , Esporos Bacterianos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA