Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 30, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212456

RESUMO

BACKGROUND: Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS: In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS: Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION: NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.


Assuntos
RNA Longo não Codificante , Acidente Vascular Cerebral , Animais , Camundongos , Apoptose/genética , Autofagia/genética , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445979

RESUMO

Ischemic stroke, a significant neurovascular disorder, currently lacks effective restorative medication. However, recently developed nanomedicines bring renewed promise for alleviating ischemia's effects and facilitating the healing of neurological and physical functions. The aim of this systematic review was to evaluate the efficacy of nanotherapies in animal models of stroke and their potential impact on future stroke therapies. We also assessed the scientific quality of current research focused on nanoparticle-based treatments for ischemic stroke in animal models. We summarized the effectiveness of nanotherapies in these models, considering multiple factors such as their anti-inflammatory, antioxidant, and angiogenetic properties, as well as their safety and biodistribution. We conclude that the application of nanomedicines may reduce infarct size and improve neurological function post-stroke without causing significant organ toxicity.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Nanopartículas , Acidente Vascular Cerebral , Animais , Distribuição Tecidual , Acidente Vascular Cerebral/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Anti-Inflamatórios , Nanopartículas/uso terapêutico , Isquemia Encefálica/tratamento farmacológico
3.
Arterioscler Thromb Vasc Biol ; 41(3): 1127-1145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33327747

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/fisiologia , NF-kappa B/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição RelA/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
4.
J Clin Ultrasound ; 50(1): 7-13, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709656

RESUMO

BACKGROUND: Echocardiography is generally used in our daily practice to detect cardiovascular complications in COVID-19 patients and for etiological research in the case of worsened clinical status. Many echocardiographic parameters have been the subject of investigation in previous studies on COVID-19. Recently, the right ventricle early inflow-outflow (RVEIO) index has been identified as a possible and indirect marker of the severity of tricuspid regurgitation and right ventricular dysfunction in pulmonary embolism. In this study, we aimed to investigate the relationship between the severity of pneumonia in COVID-19 patients and the RVEIO index. METHODS: A total of 54 patients diagnosed with COVID-19 pneumonia were enrolled in this study. Our study population was separated into two groups as severe pneumonia and nonsevere pneumonia based on computed tomography imaging. RESULTS: Saturation O2 , C-reactive protein, D-dimer, deceleration time, tricuspid annular plane systolic excursion, tricuspid lateral annular systolic velocity, and RVEIO index values were found to be significantly different between severe and nonsevere pneumonia groups. The result of the multivariate logistic regression test revealed that saturation O2, D-dimer, Sm, and RVEIO index were the independent predictive parameters for severe pneumonia. Receiver operating characteristic curve analysis demonstrated that RVEIO index >4.2 predicted severe pneumonia with 77% sensitivity and 79% specificity. CONCLUSION: The RVEIO index can be used as a bedside, noninvasive, easily accessible, and useful marker to identify the COVID-19 patient group with widespread pneumonia and, therefore high risk of complications, morbidity, and mortality.


Assuntos
COVID-19 , Disfunção Ventricular Direita , Ecocardiografia , Ventrículos do Coração/diagnóstico por imagem , Humanos , SARS-CoV-2 , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita
5.
Turk J Med Sci ; 52(1): 248-257, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773698

RESUMO

BACKGROUND: Glial cell-line-derived neurotrophic factor (GDNF) is a well-known regulatory neurotrophic factor on dopaminergic neurons. Several pathologies have been documented so far in case of any impairment in the dopaminergic system. This study aimed to investigate the potential protective role of lentiviral GNDF delivery on the small population of tyrosine hydroxylase (TH) positive dopamine producing striatal neurons after ischemic stroke. METHODS: Fourteen C57BL/6J male mice (8-10 weeks) were intracerebrally treated with lentiviral GDNF (Lv-GDNF) or vehicle. Ten days after injections, cerebral ischemia was induced by blockage of the middle cerebral artery. Animals were terminated 72 h after ischemia, and their brains were taken for histological and molecular investigations. Following confirmation of GDNF overexpression, TH immunostaining and immunoblotting were used to evaluate the role of GDNF on dopaminergic neurons. Next, Fluro Jade C staining was implemented to examine the degree of neuronal degeneration at the damaged parenchyma. RESULTS: Neither the amount of TH positive dopaminergic neurons nor the expression of TH changed in the Lv-GDNF treated animals comparing to the vehicle group. On the other hand, GDNF exposure caused a significant increase in the expression of Nurr1, an essential transcription factor for dopaminergic neurons and Gap43, growth and plasticity promoting protein, in the ischemic striatum. Treatment with Lv-GDNF gave rise to a significant reduction in the number of degenerated neurons. Finally, enhanced GDNF expression also induced expression of an important stress-related transcription factor NF-κB as well as the nitric oxide synthase enzymes iNOS and nNOS in the contralesional hemisphere.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , AVC Isquêmico , Animais , Camundongos , Masculino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , Isquemia , Fatores de Transcrição
6.
J Stroke Cerebrovasc Dis ; 30(12): 106105, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547676

RESUMO

OBJECTIVES: Post-ischemic inflammation leads to apoptosis as an indirect cause of functional disabilities after the stroke. Melatonin may be a good candidate for the stroke recovery because of its anti-inflammatory effects. Therefore, we investigated the effect of melatonin on inflammation in the functional recovery of brain by evaluating ipsilesional and contralesional alterations. MATERIALS AND METHODS: Melatonin (4 mg/kg/day) was intraperitoneally administered into the mice from the 3rd to the 55th day of the post-ischemia after 30 min of middle cerebral artery occlusion. RESULTS: Melatonin produced a functional recovery by reducing the emigration of the circulatory leukocytes and the local microglial activation within the ischemic brain. Overall, the expression of the inflammation-related genes reduced upon melatonin treatment in the ischemic hemisphere. On the other hand, the expression level of the inflammatory cytokine genes raised in the contralateral hemisphere at the 55th day of the post-ischemia. Furthermore, melatonin triggers an increase in the iNOS expression and a decrease in the nNOS expression in the ipsilateral hemisphere at the earlier times in the post-ischemic recovery. At the 55th day of the post-ischemic recovery, melatonin administration enhanced the eNOS and nNOS protein expressions. CONCLUSIONS: The present molecular, biological, and histological data have revealed broad anti-inflammatory effects of melatonin in both hemispheres with distinct temporal and spatial patterns at different phases of post-stroke recovery. These outcomes also established that melatonin act recruitment of contralesional rather than of ipsilesional.


Assuntos
Isquemia Encefálica , Citocinas , Inflamação , Melatonina , Plasticidade Neuronal , Animais , Anti-Inflamatórios/administração & dosagem , Isquemia Encefálica/fisiopatologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Melatonina/administração & dosagem , Camundongos , Plasticidade Neuronal/fisiologia , Tempo para o Tratamento
7.
Turk J Med Sci ; 51(5): 2705-2715, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33356029

RESUMO

BACKGROUND: Circadian rhythm plays a significant role in the regulation of almost all kinds of physiological processes. In addition, it may also have a direct or indirect effect on the neurodegenerative processes, including Alzheimer's disease, Parkinson's disease, and ischemic stroke. Therefore, the identification of circadian rhythm-related proteins is crucial to be able to understand the molecular mechanism of the circadian rhythm and to define new therapeutic target for the treatment of degenerative disorders. METHODS: To identify the light and dark regulated proteins, 8-12 weeks, male Balb/C mice were used at two different time points (morning (Zeitgeber time-0 (ZT0)) and midnight (ZT18)) under physiological conditions. Therefore, brain tissues were analyzed via liquid chromatography tandem mass spectrometry. RESULTS: A total of 1621 different proteins were identified between ZT0 and ZT18 mice. Among these proteins, 23 proteins were differentially expressed (p < 0.05 and fold change 1.4) in ZT18 mice, 11 upregulated (AKAP10, ALDOC, BLK, NCALD, NFL, PDE10A, PICAL, PSMB6, RL10, SH3L3, and SYNJ1), and 12 downregulated (AT2A2, AT2B1, CPNE5, KAP3, MAON, NPM, PI51C, PPR1B, SAM50, TOM70, TY3H, and VAPA) as compared with ZT0 mice. DISCUSSION: Taken together, here we identified circadian rhythm-related proteins, and our further analysis revealed that these proteins play significant roles in molecular function, membrane trafficking, biogenesis, cellular process, metabolic process, and neurodegenerative disorders such as Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Masculino , Camundongos , Ritmo Circadiano/fisiologia , Encéfalo , Camundongos Endogâmicos BALB C
8.
Eur J Oral Sci ; 128(3): 183-189, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32236990

RESUMO

Axonal regeneration of the inferior alveolar nerve (IAN) is a therapeutic target for functional recovery after peripheral nerve injury. Rifampicin exerts anti-apoptotic, anti-inflammatory, and anti-oxidant effects on nerve tissues that may enhance functional recovery after peripheral nerve injury. The aim of the present study was to evaluate the therapeutic effects of systemic rifampicin following IAN crush injury. Following the nerve crush injuries of the IAN, 24 Sprague-Dawley rats were randomly divided into three groups to receive daily intraperitoneal injections of either vehicle, 5 mg kg-1 rifampicin, or 20 mg kg-1 rifampicin. Twenty-four days after induction of nerve injuries, Fluorogold (FG) was injected over the mental foramen for the evaluation of neuronal survival. At the end of the four-week period, histologic and histomorphometric examination of IAN samples were performed and FG positive cells were counted in the trigeminal ganglion sections. FG positive cells were significantly more frequent in the 20 and 5 mg kg-1 rifampicin groups than in the vehicle-treated group. Electron microscopic analyses revealed that the percentage of axons with optimum g-ratio was significantly lower in the vehicle group than in both treatment groups. In conclusion, systemic rifampicin treatment can enhance peripheral nerve regeneration.


Assuntos
Lesões por Esmagamento , Nervo Mandibular , Animais , Lesões por Esmagamento/tratamento farmacológico , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Rifampina , Gânglio Trigeminal
9.
Turk J Med Sci ; 50(SI-2): 1655-1664, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32962330

RESUMO

Apart from its metabolic or physiological functions, melatonin has a potent cytoprotective activity in the physiological and pathological conditions. It is synthetized by the pineal gland and released into the blood circulation but particularly cerebrospinal fluid in a circadian manner. It can also easily diffuse through cellular membranes due its small size and lipophilic structure. Its cytoprotective activity has been linked to its potent free radical scavenger activity with the desirable characteristics of a clinically- reliable antioxidant. Melatonin detoxifies oxygen and nitrogen-based free radicals and oxidizing agents, including the highly toxic hydroxyl-and peroxynitrite radicals, initiating cellular damage. However, the cytoprotective activity of melatonin is complex and cannot be solely limited to its free radical scavenger activity. It regulates cellular signaling pathways through receptor­ dependent and independent mechanisms. Most of these downstream molecules, such as PI3K/AKT pathway components, also contribute to the cytoprotective effects of melatonin. In this term, melatonin is a promising molecule for the treatment of neurodegenerative disorders, such as ischemic stroke, which melatonin reduces ischemic brain injury in animal models of ischemic stroke. It regulates also circadian rhythm proteins after ischemic stroke, playing roles in cellular survival. In this context, present article summarizes the possible role of melatonin in the pathophysiological events after ischemic stroke.


Assuntos
Apoptose/efeitos dos fármacos , AVC Isquêmico , Melatonina , Animais , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Radicais Livres/metabolismo , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/fisiologia , Camundongos , Substâncias Protetoras/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos
10.
Turk J Med Sci ; 50(8): 1825-1837, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32222128

RESUMO

Background/aim: The management of dura-related complications, such as the repairment of dural tears and reconstruction of large dural defects, remain the most challenging subjects of neurosurgery. Numerous surgical techniques and synthetic or autologous adjuvant materials have emerged as an adjunct to primary dural closure, which may result in further complications or side effects. Therefore, the subcutaneous autologous free adipose tissue graft has been recommended for the protection of the central nervous system and repairment of the meninges. In addition, human adipose tissue is also a source of multipotent stem cells. However, epidural adipose tissue seems more promising than subcutaneous because of the close location and intercellular communication with the spinal cord. Herein, it was aimed to define differentiation capability of both subcutaneous and epidural adipose tissue-derived stem cells (ASCs). Materials and methods: Human subcutaneous and epidural adipose tissue specimens were harvested from the primary incisional site and the lumbar epidural space during lumbar spinal surgery, and ASCs were isolated. Results: The results indicated that both types of ASCs expressed the cell surface markers, which are commonly expressed stem cells; however, epidural ASCs showed lower expression of CD90 than the subcutaneous ASCs. Moreover, it was demonstrated that the osteogenic and neurogenic differentiation capability of epidural adipose tissue-derived ASCs was more pronounced than that of the subcutaneous ASCs. Conclusion: Consequently, the impact of characterization of epidural ASCs will allow for a new understanding for dural as well as central nervous system healing and recovery after an injury.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Neurogênese/fisiologia , Osteogênese/fisiologia , Células-Tronco/metabolismo , Células Cultivadas , Espaço Epidural , Humanos , Gordura Subcutânea/metabolismo
11.
Toxicol Appl Pharmacol ; 379: 114686, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325559

RESUMO

Indolamine melatonin structurally resembles non-covalent proteasome inhibitors; however, the role of ubiquitin proteasome system (UPS) in neuronal survival and how melatonin carries out UPS inhibition remain largely unknown. With the use of melatonin treated cells, we evaluated the expression of Nedd4-1, an E3 ligase, how melatonin regulates its activity and its relationship with neuronal survival. Nedd4-1 was upregulated in the hypoxic condition in both control and Nedd4-1 overexpressed cells and melatonin treatment reversed its expression in both normoxic and hypoxic conditions, which was associated with increased cellular survival. Melatonin had no effect on the expression of Nedd4-1 at mRNA level. However, when melatonin was administered along with protein synthesis inhibitor cycloheximide, protein level of Nedd4-1 was further reduced, indicating that melatonin possibly downregulates Nedd4-1 after its synthesis. Notably, co-immunoprecipitation analyses followed by Liquid chromatography-Mass Spectrometry (LC-MS/MS) revealed that melatonin may dissociate ribosomal proteins, such as RS19, RL23A, and nucleophosmin from Nedd4-1, while 40S ribosomal protein S7 and 60S ribosomal protein L35 came into contact with Nedd4-1 upon melatonin treatment. By using IPA analyses, we obtained further data indicated novel target molecules of melatonin in hypoxic conditions, including OTOF, SF3B2, IPO5, ST13, FGFR3, Mx1/Mx2, playing roles in RNA splicing and trafficking, growth factor and interferon signaling. Here, we described a new insight into the role of melatonin in UPS functioning by proposing a molecular mechanism through which melatonin regulates Nedd4-1.


Assuntos
Sobrevivência Celular , Melatonina/fisiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação para Baixo , Cromatografia Gasosa-Espectrometria de Massas , Hipóxia/metabolismo , Imunoprecipitação , Melatonina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
12.
Mol Biol Rep ; 46(1): 241-250, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30406889

RESUMO

Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in young adults and children in the industrialized countries; however, there are presently no FDA approved therapies. TBI results in oxidative stress due to the overproduction of reactive oxygen species and overwhelming of the endogenous antioxidant mechanisms. Recently, it has been reported that antioxidants including phytochemicals have a protective role against oxidative damage and inflammation after TBI. To analyze the effects of a naturally occurring antioxidant molecule, allyl isothiocyanate (AITC), on the nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB) signaling pathways in TBI, a cryogenic injury model was induced in mice. Here, we showed that AITC administered immediately after the injury significantly decreased infarct volume and blood-brain barrier (BBB) permeability. Protein levels of proinflammatory cytokines interleukin-1ß (IL1ß) and interleukin-6 (IL6), glial fibrillary acidic protein (GFAP) and NF-κB were decreased, while Nrf2, growth-associated protein 43 (GAP43) and neural cell adhesion molecule levels were increased with AITC when compared with vehicle control. Our results demonstrated that the antioxidant molecule AITC, when applied immediately after TBI, provided beneficial effects on inflammatory processes while improving infarct volume and BBB permeability. Increased levels of plasticity markers, as well as an antioxidant gene regulator, Nrf2, by AITC, suggest that future studies are warranted to assess the protective activities of dietary or medicinal AITC in clinical studies.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Isotiocianatos/farmacologia , Animais , Antioxidantes/farmacologia , Lesões Encefálicas/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Heme Oxigenase-1/efeitos dos fármacos , Inflamação/tratamento farmacológico , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Isotiocianatos/metabolismo , Masculino , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Psychiatry Clin Neurosci ; 72(3): 152-159, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29315976

RESUMO

Rifampicin exerts significant brain protective functions in multiple experimental models. Here we summarize the underlying mechanisms of the neuroprotective and pro-cognitive effects of rifampicin that are mediated by its anti-inflammatory, anti-tau, anti-amyloid, and cholinergic effects. Beyond suggesting that rifampicin shows strong brain protective effects in preclinical models of Alzheimer's disease, we also provide substantial clinical evidence for the neuroprotective and pro-cognitive effects of rifampicin. Future neuroimaging studies combined with clinical assessment scores are the following steps to be taken in this field of research.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Rifampina/farmacologia , Humanos
14.
Cutan Ocul Toxicol ; 37(4): 332-337, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29648477

RESUMO

PURPOSE: Sulphur mustard (SM) is an highly toxic and vesicant chemical weapon that was used in various military conflicts several times in the history. The severity of ocular, dermal, and pulmonary symptoms that may appear following a characteristic asymptomatic period are depending on the SM concentration and exposure duration. The aim of this study is to present the clinical features and share the intensive care unit (ICU) experiences for the medical management of mustard gas victims. MATERIALS AND METHODS: Thirteen Free Syrian Army soldiers near Al-Bab region of North Syria were reportedly exposed to oily blackish smoke with garlic smell due to the explosion of a trapped bomb without causing any blast or thermal effect on 26th November 2016. None of them wore any chemical protective suits or gas masks during explosion. Since they observed skin lesions including bullous formation next day, they were admitted to the Turkish Field Hospital at the Turkish - Syrian border and then evacuated to the State Hospital of Gaziantep Province, Turkey for further management. Eight victims who were very close to point of explosion suffered burning eyes, sore throat, dry cough and dyspnoea after the chemical attack. RESULTS: On admission to hospital, all cases had conjunctivitis, hoarseness and bullae on various body areas. Blepharospasm and opacity were found in 8 patients and 5 of them had corneal erosions and periorbital oedema. Temporary loss of vision in 4 cases lasted for 24 h. Multiple fluid-filled blisters were observed especially on the scalp, neck, arms and hands, where direct skin exposure to the agent occurred. A definitive clinical care and infection prophylaxis measures along with the burn treatment and bronchodilators for respiratory effects were applied in ICU. Two patients received granulocyte-colony-stimulating factor due to the SM-mediated bone marrow suppression on the 16th day of exposure and one of them died because of necrotic bronchial pseudomembrane obstruction resulting in cardiopulmonary arrest. CONCLUSIONS: SM was first used during the First World War and it is still considered one of the major chemical weapons recently used by non-state actors in Syria and Iraq. In case of SM exposure, medical treatment of SM-induced lesions is symptomatic because no antidote or causal therapy does exist even though SM is very well known for over 100 years. However, clinical management in intensive care medicine of SM victims have improved since the 1980s, this study which is one of the largest recent SM-exposed case series since that time is important for the contribution to the clinical experience.


Assuntos
Substâncias para a Guerra Química , Guerra Química , Cuidados Críticos/métodos , Gás de Mostarda , Adulto , Vesícula/patologia , Doenças da Medula Óssea/induzido quimicamente , Doenças da Medula Óssea/tratamento farmacológico , Dispneia/induzido quimicamente , Dispneia/terapia , Oftalmopatias/induzido quimicamente , Oftalmopatias/terapia , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Humanos , Irritantes/uso terapêutico , Masculino , Faringite/induzido quimicamente , Faringite/terapia , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/terapia , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/terapia , Síria , Turquia
15.
Anticancer Drugs ; 28(8): 869-879, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28614092

RESUMO

Prostate cancer is the second most common cancer among men and the leading cause of death after lung cancer. Development of hormone-refractory disease is a crucial step for prostate cancer progression for which an effective treatment option is currently unavailable. Therefore, there is a need for new agents that can efficiently target cancer cells, decrease tumor growth, and thereby extend the survival of patients in late-stage castration-resistant prostate cancer. In the current study, a novel heterodinuclear copper(II)Mn(II) Schiff base complex combined with P85 was used to evaluate anticancer activity against prostate cancer in vitro and in vivo. Cell proliferation and cytotoxicity were evaluated by cell viability, gene, and protein expression assays in vitro. Results showed that the heterodinuclear copper(II)Mn(II) complex-P85 combination decreased cell proliferation by upregulating the apoptotic gene expressions and blocking the cell proliferation-related pathways. Tramp-C1-injected C57/B16 mice were used to mimic a prostate cancer model. Treatment combination of Schiff base complex and P85 significantly enhanced the cellular uptake of chemicals (by blocking the drug transporters and increased life time), suppressed tumor growth, and decreased tumor volume steadily over the course of the experiments. Overall, heterodinuclear copper(II)Mn(II) complex-P85 showed remarkable anticancer activity against prostate cancer in in vitro and in vivo.


Assuntos
Poloxaleno/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Bases de Schiff/farmacologia , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/genética
16.
Psychiatry Clin Neurosci ; 71(10): 673-677, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28523718

RESUMO

Sleep is an important factor that plays a key role in Alzheimer's disease pathogenesis. However, it is still unclear whether poor-quality sleep may overlap with sleep disturbances in the underlying dysfunctional mechanisms of amyloid beta (Aß) clearance metabolism. Here, we aimed to evaluate the current evidence on the role of sleep deprivation in Aß clearance metabolism. To that end, we discuss possible mechanisms underlying the bidirectional interaction between the sleep deprivation and Aß clearance pathways.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Privação do Sono/metabolismo , Doença de Alzheimer/complicações , Animais , Humanos , Privação do Sono/complicações
17.
Prostate ; 76(15): 1454-63, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27338565

RESUMO

BACKGROUND: Prostate cancer which is the second most common cause of death among men has a high incidence in recent years. Current therapeutic regimens should be improved to overcome drug resistance. At the metastatic stage, tumors become refractory to established chemotherapeutic treatments and cause serious problems at the clinics. Development of new drug molecules that are able to transport through the membrane easily and kill tumor cells rapidly is of great interest. METHOD: In the current study, a novel Heterodinuclear copper(II)Mn(II) Schiff base complex combined with P85 was used for prostate cancer treatment in vivo. Tramp-C1 cells injected animals were subjected to chemotherapeutic formulation treatment and results were analyzed by toxicology analysis, tumor volume measurements, and histopathological analysis. 0.5 mg/kg Schiff base was selected and combined with 0.05% P85 according to the toxicology analysis showing the enzyme levels, blood parameters, and multiple organ toxicity. RESULTS: Results demonstrated that Heterodinuclear copper(II)Mn(II) complex-P85 combination decreased tumor formation and tumor volume steadily over the course of experiments. CONCLUSIONS: Overall, Heterodinuclear copper(II)Mn(II) complex-P85 exerted remarkable anti-cancer activity in vivo in C57/B16 mice. Prostate 76:1454-1463, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Adenocarcinoma/prevenção & controle , Poloxâmero/administração & dosagem , Neoplasias da Próstata/prevenção & controle , Bases de Schiff/administração & dosagem , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Combinação de Medicamentos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poloxâmero/toxicidade , Neoplasias da Próstata/patologia , Bases de Schiff/toxicidade , Carga Tumoral
18.
Metab Brain Dis ; 31(4): 827-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26943480

RESUMO

Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.


Assuntos
Hormônio do Crescimento/sangue , Hipóxia-Isquemia Encefálica/sangue , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/patologia , Animais , Sobrevivência Celular , Fragmentação do DNA , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/patologia , Masculino , Ratos
19.
Neurobiol Dis ; 83: 16-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26316359

RESUMO

According to the French paradox, red wine consumption reduces the incidence of vascular diseases even in the presence of highly saturated fatty acid intake. This phenomenon is widely attributed to the phytoalexin resveratrol, a red wine ingredient. Experimental studies suggesting that resveratrol has neuroprotective properties mostly used prophylactic delivery strategies associated with short observation periods. These studies did not allow conclusions to be made about resveratrol's therapeutic efficacy post-stroke. Herein, we systematically analyzed effects of prophylactic, acute and post-acute delivery of resveratrol (50mg/kg) on neurological recovery, tissue survival, and angioneurogenesis after focal cerebral ischemia induced by intraluminal middle cerebral artery occlusion in mice. Over an observation period of four weeks, only prolonged post-acute resveratrol delivery induced sustained neurological recovery as assessed by rota rod, tight rope and corner turn tests. Although prophylactic and acute resveratrol delivery reduced infarct volume and enhanced blood-brain-barrier integrity at 2 days post-ischemia by elevating resveratrol's downstream signal sirtuin-1, increasing cell survival signals (phosphorylated Akt, heme oxygenase-1, Bcl-2) and decreasing cell death signals (Bax, activated caspase-3), a sustained reduction of infarct size on day 28 was not observed in any of the three experimental conditions. Instead, enhanced angiogenesis and neurogenesis were noted in animals receiving post-acute resveratrol delivery, which were associated with elevated concentrations of GDNF and VEGF in the brain. Thus, sustained neurological recovery induced by resveratrol depends on successful brain remodeling rather than structural neuroprotection. The recovery promoting effect of delayed resveratrol delivery opens promising perspectives for stroke therapy.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Recuperação de Função Fisiológica , Estilbenos/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/fisiopatologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Resveratrol , Teste de Desempenho do Rota-Rod , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Acidente Vascular Cerebral/patologia
20.
Acta Neuropathol ; 130(4): 603, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26341346

RESUMO

Erratum to: Acta Neuropathol (2012) 123:273­284. DOI 10.1007/s00401­011­0914­z. The authors would like to correct Fig. 3 of the original manuscript, since the image in Fig. 3b does not correspond to a VEGF treated animal. Corrected Fig. 3 is shown below. We apologize for this mistake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA