Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 28(69): e202202527, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979748

RESUMO

The synthesis, characterization and catalytic activity of a new class of diruthenium hydrido carbonyl complexes bound to the tBu PNNP expanded pincer ligand is described. Reacting tBu PNNP with two equiv of RuHCl(PPh3 )3 (CO) at 140 °C produces an insoluble air-stable complex, which was structurally characterized as [Ru2 (tBu PNNP)H(µ-H)Cl(µ-Cl)(CO)2 ] (1) using solid-state NMR, IR and X-ray absorption spectroscopies and follow-up reactivity. A reaction with KOtBu results in deprotonation of a methylene linker to produce [Ru2 (tBu PNNP* )H(µ-H)(µ-OtBu)(CO)2 ] (3) featuring a partially dearomatized naphthyridine core. This enables metal-ligand cooperative activation of H2 analogous to the mononuclear analogue, [Ru(tBu PNP*)H(CO)]. In contrast to the mononuclear system, the bimetallic analogue 3 catalyzes the E-selective semi-hydrogenation of alkynes at ambient temperature and atmospheric H2 pressure with good functional group tolerance. Monitoring the semi-hydrogenation of diphenylacetylene by 1 H NMR spectroscopy shows the intermediacy of Z-stilbene, which is subsequently isomerized to the E-isomer. Initial findings into the mode of action of this system are provided, including the spectroscopic characterization of a polyhydride intermediate and the isolation of a deactivated species with a partially hydrogenated naphthyridine backbone.


Assuntos
Alcinos , Compostos Heterocíclicos , Ligantes , Cristalografia por Raios X , Modelos Moleculares , Hidrogenação
2.
Chem Commun (Camb) ; 60(52): 6663-6666, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860402

RESUMO

We report a templated Scholl oxidation strategy for the preparation of the first ß-diketiminate (BDI) ligands embedded within a 24-electron π-system backbone. The resulting benzo[f,g]tetracene BDI ligand was coordinated to a zinc centre and electrochemical studies showed the redox active nature of the ligand.

3.
Chem Sci ; 15(23): 8606-8624, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38873080

RESUMO

Polymeric materials play a pivotal role in our modern world, offering a diverse range of applications. However, they have been designed with end-properties in mind over recyclability, leading to a crisis in their waste management. The recent emergence of electrochemical recycling methodologies for polymeric materials provides new perspectives on closing their life cycle, and to a larger extent, the plastic loop by transforming plastic waste into monomers, building blocks, or new polymers. In this context, we summarize electrochemical strategies developed for the recovery of building blocks, the functionalization of polymer chains as well as paired electrolysis and discuss how they can make an impact on plastic recycling, especially compared to traditional thermochemical approaches. Additionally, we explore potential directions that could revolutionize research in electrochemical plastic recycling, addressing associated challenges.

4.
Organometallics ; 42(1): 27-37, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36644418

RESUMO

Steric properties of ligands are an important parameter for tuning the reactivity of the corresponding complexes. For various ligands used in mononuclear complexes, methods have been developed to quantify their steric bulk. In this work, we present an expansion of the buried volume and the G-parameter to quantify the steric properties of 1,8-napthyridine-based dinuclear complexes. Using this methodology, we explored the tunability of the steric properties associated with these ligands and complexes.

5.
ACS Catal ; 13(8): 5712-5722, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123598

RESUMO

Understanding how multicopper oxidases (MCOs) reduce oxygen in the trinuclear copper cluster (TNC) is of great importance for development of catalysts for the oxygen reduction reaction (ORR). Herein, we report a mechanistic investigation into the ORR activity of the dinuclear copper complex [Cu2L(µ-OH)]3+ (L = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine). This complex is inspired by the dinuclear T3 site found in the MCO active site and confines the Cu centers in a rigid scaffold. We show that the electrochemical reduction of [Cu2L(µ-OH)]3+ follows a proton-coupled electron transfer pathway and requires a larger overpotential due to the presence of the Cu-OH-Cu motif. In addition, we provide evidence that metal-metal cooperativity takes place during catalysis that is facilitated by the constraints of the rigid ligand framework, by identification of key intermediates along the catalytic cycle of [Cu2L(µ-OH)]3+ . Electrochemical studies show that the mechanisms of the ORR and hydrogen peroxide reduction reaction found for [Cu2L(µ-OH)]3+ differ from the ones found for analogous mononuclear copper catalysts. In addition, the metal-metal cooperativity results in an improved selectivity for the four-electron ORR of more than 70% because reaction intermediates can be stabilized better between both copper centers. Overall, the mechanism of the [Cu2L(µ-OH)]3+ -catalyzed ORR in this work contributes to the understanding of how the cooperative function of multiple metals in close proximity can affect ORR activity and selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA