Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clean Prod ; 296: 126460, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33679008

RESUMO

With the ongoing global pandemic due to Coronavirus (COVID-19), the use of personal protective equipment (PPE), specifically single-use surgical masks, have been on a sharp incline. Currently, many countries are experiencing second and third waves of COVID-19 and as such have resorted to making face masks a mandatory requirement. The repercussions of this have resulted in millions of single-use face masks being discharged into the environment, washing up on beaches, floating beneath oceans and ending up in vulnerable places. The global pandemic has not only affected the economy and health of the world's population but now is seriously threatening the natural environment. The main plastic in single-use face masks is polypropylene which in landfill can take more than 25 years to break down. This paper explores an innovative way to use pandemic waste in concrete construction with the main focus on single-use face masks. Single-use masks have been cut-up by first removing the ear loops and inner nose wire to size and spread throughout five different mix designs to explore the possible benefits and uses within concrete. The masks were introduced by volume at 0% (control), 0.10%, 0.15%, 0.20% and 0.25% with testing focusing on compressive strength, indirect tensile strength, modulus of elasticity and ultrasonic pulse velocity to test the overall quality of the concrete. The introduction of the single-use face masks led to an increase in the strength properties of the concrete samples, as well as an increase in the overall quality of the concrete. However, beyond 0.20%, the trend of increasing strength began to decrease.

2.
Sci Total Environ ; 812: 151423, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742992

RESUMO

The use of single-use nitrile gloves has been on a sharp incline since the Coronavirus pandemic first started in late 2019. This led to a significant increase in the generation of this clinical waste that requires various recycling solutions to reduce its environmental impact from disposal or incineration. This paper explores its application in structural concrete by adding shredded nitrile gloves at 0.1%, 0.2%, and 0.3% of the volume of concrete. The compressive strength, modulus of elasticity, ultrasonic pulse velocity, and SEM-EDS analysis were undertaken to ascertain the effect of different concentrations of shredded nitrile gloves on the mechanical properties, quality of concrete, and its bond performance with the cement matrix. The results demonstrate that the inclusion of up to 0.2% of shredded nitrile gloves can provide ~22% improvement in the compressive strength of blended concrete composites at 28-days of curing. In comparison, the inclusion of 0.3% of shredded nitrile gloves shows improvements of ~20% in compressive strength at 28-days. The SEM-EDS analysis shows a very good bond formation between the nitrile rubber and the cement matrix with no gap identified in the interfacial transition zone (ITZ).


Assuntos
COVID-19 , Materiais de Construção , Humanos , Nitrilas , Borracha , SARS-CoV-2
3.
Sci Total Environ ; 769: 145527, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736252

RESUMO

The coronavirus (COVID-19) pandemic has not only created a global health crisis, but it is also now threatening the environment. A multidisciplinary collaborative approach is required to fight against the pandemic and reduce the environmental risks associated with the disposal of used personal protective equipment (PPE). This paper explores an innovative way to reduce pandemic-generated waste by recycling the used face masks with other waste materials in civil constructions. In this research, for the first time, a series of experiments, including modified compaction, unconfined compression strength and resilient modulus tests, were conducted on the blends of different percentages of the shredded face mask (SFM) added to the recycled concrete aggregate (RCA) for road base and subbase applications. The experimental results show that RCA mixed with three different percentages (i.e., 1%, 2% and 3%) of SFM satisfied the stiffness and strength requirements for pavements base/subbase. The introduction of the shredded face mask not only increased the strength and stiffness but also improved the ductility and flexibility of RCA/SFM blends. The inclusion of 1% SFM to RCA resulted in the highest values of unconfined compressive strength (216 kPa) and the highest resilient modulus (314.35 MP). However, beyond 2%, increasing the amount of SFM led to a decrease in strength and stiffness.


Assuntos
COVID-19 , Humanos , Máscaras , Pandemias , Equipamento de Proteção Individual , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA