Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2467-2476, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38175955

RESUMO

Neuromorphic computing, which mimics the structure and principles of the human brain, has the potential to facilitate the hardware implementation of next-generation artificial intelligence systems and process large amounts of data with very low power consumption. Among them, the XNOR synapse-based Binary Neural Network (BNN) has been attracting attention due to its compact neural network parameter size and low hardware cost. The previous XNOR synapse has drawbacks, such as a trade-off between cell density and accuracy. In this work, we show nonvolatile XNOR synapses with high density and accuracy using a monolithically stacked complementary ferroelectric field-effect transistor (C-FeFET) composed of a p-type Si MFMIS-FeFET at the bottom and a 3D stackable n-type Al:IZTO MFS-FeTFT, achieving 60F2 per cell (2C-FeFET). For adjusting the threshold voltage and improving the switching speed (100 ns) of n-type ferroelectric TFT, we employed a dual-gate configuration and a unique operation scheme, making it comparable to those of Si-based FeFETs. We performed array-level simulation with a 512 × 512 subarray size and a 3-bit flash ADC, demonstrating that the image recognition accuracies using the MNIST and CIFAR-10 data sets were increased by 3.17 and 14.07%, respectively, in comparison to other nonvolatile XNOR synapses. In addition, we performed system-level analysis on a 512 × 512 XNOR C-FeFET, exhibiting an outstanding throughput of 717.37 GOPS and an energy efficiency of 196.7 TOPS/W. We expect that our approach would contribute to the high-density memory systems, logic-in-memory technology, and hardware implementation of neural networks.

2.
ACS Appl Mater Interfaces ; 14(38): 43463-43473, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36108249

RESUMO

We present herewith a novel approach of equally thick AFE/FE (ZrO2/HZO) bilayer stack heterostructure films for achieving an equivalent oxide thickness (EOT) of 4.1 Å with a dielectric constant (κ) of 56 in complementary metal-oxide semiconductor (CMOS) compatible metal-ferroelectric-metal (MFM) capacitors using a high-pressure annealing (HPA) technique. The low EOT and high κ values were achieved by careful optimization of AFE/FE film thicknesses and HPA conditions near the morphotropic phase boundary (MPB) after field cycling effects. Stable leakage current density (J < 10-7 A/cm2 at ±0.8 V) was found at 3/3 nm bilayer stack films (κ = 56 and EOT = 4.1 Å) measured at room temperature. In comparison with previous work, our remarkable achievement stems from the interfacial coupling between FE and AFE films as well as a high-quality crystalline structure formed by HPA. Kinetically stabilized hafnia films result in a small grain size in bilayer films, leading to reducing the leakage current density. Further, a higher κ value of 59 and lower EOT of 3.4 Å were found at 333 K. However, stable leakage current density was found at 273 K with a high κ value of 53 and EOT of 3.85 Å with J < 10-7 A/cm2. This is the lowest recorded EOT employing hafnia and TiN electrodes that are compatible with CMOS, and it has important implications for future dynamic random access memory (DRAM) technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA