Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(3): 1333-1348, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31854415

RESUMO

Using molecular dynamics simulations, herein, we illustrate that a bending structure shows different behaviors for fast water transport through aquaporin-mimicking membranes in multilayer graphene and tubular structures. This suggests that the bending structure enhances water transport through multilayer membranes, indicating the optimum state at θ = 45°. Disruption of the single-file water arrangement inside the membrane can contribute to promoting water transport in this system. However, a bending structure reduces the rate of water transport in tubular systems. Our results exhibit that a straight tubular membrane transfers water molecules faster than its non-straight counterpart. A stabilized form of the single-file water structure was observed in the membrane. Interestingly, we found that the tubular hourglass-shaped membranes possessed a lower free energy than the multilayer membranes with an hourglass shape. This can be attributed to the accommodation of the single-file water configuration in a confined space with hydrophobic characteristics. Accordingly, integrating an hourglass shape pore in a tubular structure in an impermeable membrane provides high water permeability compared with its multilayer counterpart. We also found that the wide variation in the dipole orientation of water molecules and the energy barrier have dominant effects in determining fast water transport through multilayer and tubular membranes, respectively. The contribution of interlayer spacing on fast water transport through multilayer membranes was also studied.


Assuntos
Aquaporinas/química , Membranas Artificiais , Água/química , Grafite/química , Simulação de Dinâmica Molecular , Mimetismo Molecular , Água/metabolismo
2.
Clin Exp Pharmacol Physiol ; 46(9): 791-797, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31332816

RESUMO

The aim of this study was to investigate whether the glutathione peroxidase-1 gene (GPx-1) affects cocaine-induced conditioned place preference (CPP) using a mouse model. Cocaine-induced CPP was accompanied by an increase in the level of σ-1 receptor in the nucleus accumbens (NAc). This phenomenon was more pronounced in the GPx-1 gene knockout (GPx-1 KO) than in wild type (WT) mice. In contrast, the CPP and expression of σ-1 receptor were much less pronounced in GPx-1-overexpressing transgenic (GPx-1 TG) mice than non-transgenic (non-TG) mice. Treatment of the mice with BD1047, a σ-1 receptor antagonist, significantly attenuated both cocaine-induced CPP and c-Fos-immunoreactivity (c-Fos-IR) in WT and GPx-1 KO mice, although the effects were more evident in the latter group. Despite the protective effects of BD1047 on cocaine-induced CPP and c-Fos in non-TG mice, there were no additional protective effects in cocaine-treated GPx-1 TG mice, indicating that the σ-1 receptor is a critical target for GPx-1-mediated psychoprotective activity. Overall, our results suggest that GPx-1 attenuates cocaine-induced CPP via inhibition of σ-1 receptor expression.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Receptores sigma/genética , Animais , Técnicas de Inativação de Genes , Glutationa Peroxidase/deficiência , Camundongos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Glutationa Peroxidase GPX1 , Receptor Sigma-1
3.
J Neuroinflammation ; 15(1): 52, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467000

RESUMO

BACKGROUND: We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. METHODS: We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. RESULTS: GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. CONCLUSIONS: Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Dinorfinas/metabolismo , Ginsenosídeos/farmacologia , Metanfetamina/toxicidade , Receptores da Neurocinina-1/metabolismo , Receptores Opioides kappa/metabolismo , Substância P/metabolismo , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
4.
J Appl Toxicol ; 38(12): 1502-1520, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30027653

RESUMO

Since the cocaine-induced oxidative stress has been established to lead to hepatotoxicity, we examined the role of the glutathione peroxidase (GPx)-1 gene in cocaine-induced hepatotoxicity. Cocaine treatment significantly increased superoxide dismutase activity in as little as 1 hour, with a maximum level at 6 hours in wild-type mice, while significantly decreasing GPx activity and subsequently inducing oxidative damage (i.e., reactive oxygen species, lipid peroxidation and protein carbonylation). These changes were more prominent in the mitochondrial fraction than in the cytosolic fraction. In contrast, genetic overexpression of GPx-1 significantly attenuated cocaine-induced oxidative damage in mice. Cocaine treatment significantly increased alanine aminotransferase and aspartate aminotransferase levels in the serum. Consistently, cocaine significantly enhanced cleaved caspase-3 expression and intramitochondrial Ca2+ , while significantly reducing mitochondrial transmembrane potential. Cocaine treatment potentiated cleavage of protein kinase C δ (PKCδ), mitochondrial translocation of PKCδ, cytosolic release of cytochrome c and activation of caspase-3, followed by hepatopathologic changes. These results were more prominent in GPx-1 knockout than in wild-type mice, and they were less pronounced in overexpressing transgenic than in non-transgenic mice. Combined, our results suggest that the GPx-1 gene possesses protective potential against mitochondrial oxidative burden, mitochondrial dysfunction and hepatic degeneration induced by cocaine and that the protective mechanisms are associated with anti-apoptotic activity via inactivation of PKCδ.


Assuntos
Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Cocaína/toxicidade , Glutationa Peroxidase/genética , Estresse Oxidativo/genética , Animais , Cálcio/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos Knockout , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transgenes , Glutationa Peroxidase GPX1
5.
Phys Chem Chem Phys ; 19(31): 20749-20759, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28740979

RESUMO

In this study, molecular dynamics (MD) simulations are used to examine the water transport properties through asymmetric hourglass-shaped pores in multilayer nanoporous graphene with a constant interlayer separation of 6 Å. The properties of the tested asymmetric hourglass-shaped pores [with the models having long cone (l1, -P) and short cone (l2, +P) entrances] are compared to a symmetric pore model. The study findings indicate that the water occupancy increases across the asymmetric pore (l1, -P) compared to (l2, +P), because of the length effect. The asymmetric pore, (l1, -P), yields higher flux compared to (l2, +P) and even the symmetric model, which can be attributed to the increase in the hydrogen bonds. In addition, the single-file water molecules across the narrowest pore diameter inside the (l2, +P) pore exhibit higher viscosity compared to those in the (l1, -P) pore because of the increase in the water layering effect. Moreover, it is found that the permeability inside the multilayer hourglass-shaped pore depends on the length of the flow path of the water molecules before approaching the layer with the smallest pore diameter. The probability of dipole orientation exhibits wider distribution inside the (l1, -P) system compared to (l2, +P), implying an enhanced formation of hydrogen bonding of water molecules. This results in the fast flow of water molecules. The MD trajectory shows that the dipole orientation across the single-layer graphene has frequently flipped compared to the dipole orientation across the pores in multilayer graphene, which is maintained during the whole simulation time (although the dipole orientation has flipped for a few picoseconds at the beginning of the simulation). This can be attributed to the energy barrier induced by the individual layer. The diffusion coefficient of water molecules inside the (l2, +P) system increases with pressure difference, however, it decreases inside the (l1, -P) system because of the increase in the number of collisions. It was found that the velocity in the axial direction (z-direction) has a significant impact on the permeation ability of water molecules across the asymmetric nanopores examined in this study. Finally, the study results suggest that the appropriate design of an asymmetric hourglass-shaped nanopore in multilayer graphene can significantly improve the water permeation rate even compared to a symmetric structure.

6.
Exp Cell Res ; 336(2): 211-22, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26172215

RESUMO

The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate ß1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates ß1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-ß1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of ß1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteína-1 Reguladora de Fusão/metabolismo , Integrina beta1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Antígeno 12E7 , Adesão Celular , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Humanos , Fosforilação , Proteína Quinase C-alfa/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais , Sinteninas/metabolismo
7.
Clin Exp Pharmacol Physiol ; 43(4): 428-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26850368

RESUMO

The present study investigates the role of the glutathione peroxidase (GPx)-1 gene in cocaine-induced renal damage in mice. Multiple doses of cocaine increased lipid peroxidation, protein oxidation, and glutathione oxidation in the kidney of the non-transgenic mice (non-TG mice). The enzymatic activities of GPx and glutathione reductase were significantly decreased in non-TG mice, whereas superoxide dismutase was increased in the early phase of cocaine exposure. Treatment with cocaine resulted in significant decreases in expression of Bcl-2 and Bcl-xl in the kidney of non-TG mice, which resulted in significant increases in Bax and cleaved-caspase 3. Consistently, cocaine-induced tubular epithelial vacuolization and focal tubular necrosis were mainly observed in the proximal tubules in the kidneys of non-TG mice. These renal pathologic changes were much less pronounced in GPx-1 TG than in non-TG mice. These results suggest that the GPx-1 gene is a protective factor against nephrotoxicity induced by cocaine via interactive modulations between antioxidant and cell survival signaling processes.


Assuntos
Apoptose/efeitos dos fármacos , Cocaína/toxicidade , Glutationa Peroxidase/genética , Rim/citologia , Rim/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Relação Dose-Resposta a Droga , Expressão Gênica , Dissulfeto de Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase GPX1
8.
Arch Toxicol ; 90(4): 937-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25895139

RESUMO

We investigated whether protein kinase C (PKC) is involved in trimethyltin (TMT)-induced neurotoxicity. TMT treatment (2.8 mg/kg, i.p.) significantly increased PKCδ expression out of PKC isozymes (i.e., α, ßI, ßII, δ, and ς) in the hippocampus of wild-type (WT) mice. Consistently, treatment with TMT resulted in significant increases in cleaved PKCδ expression. Genetic or pharmacological inhibition (PKCδ knockout or rottlerin) was less susceptible to TMT-induced seizures than WT mice. TMT treatment increased glutathione oxidation, lipid peroxidation, protein oxidation, and levels of reactive oxygen species. These effects were more pronounced in the WT mice than in PKCδ knockout mice. In addition, the ability of TMT to induce nuclear translocation of Nrf2, Nrf2 DNA-binding activity, and upregulation of γ-glutamylcysteine ligase was significantly increased in the PKCδ knockout mice and rottlerin (10 or 20 mg/kg, p.o. × 6)-treated WT mice. Furthermore, neuronal degeneration (as shown by nuclear chromatin clumping and TUNEL staining) in WT mice was most pronounced 2 days after TMT. At the same time, TMT-induced inhibition of phosphoinositol 3-kinase (PI3K)/Akt signaling was evident, thereby decreasing phospho-Bad, expression of Bcl-xL and Bcl-2, and the interaction between phospho-Bad and 14-3-3 protein, and increasing Bax expression and caspase-3 cleavage were observed. Rottlerin or PKCδ knockout significantly protected these changes in anti- and pro-apoptotic factors. Importantly, treatment of the PI3K inhibitor LY294002 (0.8 or 1.6 µg, i.c.v.) 4 h before TMT counteracted protective effects (i.e., Nrf-2-dependent glutathione induction and pro-survival phenomenon) of rottlerin. Therefore, our results suggest that down-regulation of PKCδ and up-regulations of Nrf2-dependent glutathione defense mechanism and PI3K/Akt signaling are critical for attenuating TMT neurotoxicity.


Assuntos
Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Proteína Quinase C-delta/metabolismo , Compostos de Trimetilestanho/toxicidade , Acetofenonas/farmacologia , Animais , Benzopiranos/farmacologia , Relação Dose-Resposta a Droga , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Neurotóxicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/genética , Inibidores de Proteínas Quinases/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
9.
Biol Pharm Bull ; 38(8): 1208-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26235584

RESUMO

We demonstrated the inhibitory effect of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), on voltage-dependent K(+) (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Fluvoxamine reduced the amplitude of Kv currents in a concentration-dependent manner with an IC50 value of 3.71±1.09 µM and a Hill coefficient of 0.62±0.14. Although fluvoxamine did not significantly affect the steady-state activation curve, it shifted the steady-state inactivation curve toward a more negative potential. Pretreatment with another SSRI, paroxetine, did not affect the basal Kv current and did not alter the inhibitory effect of fluvoxamine on Kv channels. We concluded that fluvoxamine inhibits the Kv current in a concentration-dependent manner and in a closed (inactivated) state of the Kv channels independent of serotonin reuptake inhibition.


Assuntos
Vasos Coronários/efeitos dos fármacos , Fluvoxamina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Vasos Coronários/metabolismo , Relação Dose-Resposta a Droga , Fluvoxamina/efeitos adversos , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Coelhos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos
10.
J Pharmacol Sci ; 125(3): 312-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24989838

RESUMO

We demonstrated the inhibitory effect of NNC 55-0396, a T-type Ca(2+) channel inhibitor, on voltage-dependent K(+) (K(V)) channels in freshly isolated rabbit coronary arterial smooth muscle cells. NNC 55-0396 decreased the amplitude of K(V) currents in a concentration-dependent manner, with an IC(50) of 0.080 µM and a Hill coefficient of 0.76.NNC 55-0396 did not affect steady-state activation and inactivation curves, indicating that the compound does not affect the voltage sensitivity of K(V) channel gating. Both the K(V) currents and the inhibitory effect of NNC 55-0396 on K(V) channels were not altered by depletion of extracellular Ca(2+) or intracellular ATP, suggesting that the inhibitory effect of NNC 55-0396 is independent of Ca(2+)-channel activity and phosphorylation-dependent signaling cascades. From these results, we concluded that NNC 55-0396 dosedependently inhibits K(V) currents, independently of Ca(2+)-channel activity and intracellular signaling cascades.


Assuntos
Benzimidazóis/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Vasos Coronários/citologia , Ciclopropanos/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Naftalenos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Animais , Canais de Cálcio Tipo T/fisiologia , Sinalização do Cálcio , Células Cultivadas , Relação Dose-Resposta a Droga , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Coelhos
11.
Phys Chem Chem Phys ; 16(29): 15263-71, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24939373

RESUMO

Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

12.
Food Chem Toxicol ; 173: 113627, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682417

RESUMO

Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.


Assuntos
Glutationa Peroxidase GPX1 , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Minociclina/metabolismo , Minociclina/farmacologia , Camundongos Knockout , Hipocampo
13.
J Ginseng Res ; 47(4): 561-571, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397414

RESUMO

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

14.
Biochem Biophys Res Commun ; 423(1): 110-5, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22634012

RESUMO

We investigated the effect of a specific protein kinase C (PKC) inhibitor, bisindolylmaleimide I [BIM (I)], on L-type Ca(2+) channels in rat ventricular myocytes. BIM (I) alone inhibited the L-type Ca(2+) current in a concentration-dependent manner, with a K(d) value of 3.31 ± 0.25 µM, and a Hill coefficient of 2.34 ± 0.23. Inhibition was immediate after applying BIM (I) in the bath solution and then it partially washed out. The steady-state activation curve was not altered by applying 3µ M BIM (I), but the steady-state inactivation curve shifted to a more negative potential with a change in the slope factor. Other PKC inhibitors, PKC-IP and chelerythrine, showed no significant effects either on the L-type Ca(2+) current or on the inhibitory effect of BIM (I) on the L-type Ca(2+) current. The results suggest that the inhibitory effect of BIM (I) on the L-type Ca(2+) current is independent of the PKC pathway. Thus, our results should be considered in studies using BIM (I) to inhibit PKC activity and ion channel modulation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Ventrículos do Coração/citologia , Indóis/farmacologia , Maleimidas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
15.
J Pharmacol Sci ; 120(3): 196-205, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23117866

RESUMO

We examined the effects of mibefradil, a T-type Ca²âº channel inhibitor, on voltage-dependent K⁺ (Kv) channels in rabbit coronary arterial smooth muscle cells using the whole-cell patch clamp technique. Mibefradil reduced the Kv current amplitude in a dose-dependent manner, with an apparent K(d) value of 1.08 µM. Kv current inhibition by mibefradil was highly voltage-dependent over the full activation voltage range (-30 to +10 mV). The decay rate of Kv channel inactivation was accelerated by mibefradil without altering the kinetics of current activation. The rate constants of association and dissociation were 2.23 ± 0.07 µM⁻¹·s⁻¹ and 2.40 ± 0.42 s⁻¹, respectively. Mibefradil had no significant effect on the steady-state activation or inactivation curves. In the presence of mibefradil, the recovery time constant from inactivation was decreased, and the application of train pulses (1 or 2 Hz) increased mibefradil-induced Kv channel inhibition, suggesting that the inhibitory effects of mibefradil were use-dependent. The inhibitory effect of mibefradil on Kv channels was unaffected by extracellular Ca²âº-free conditions. Moreover, the absence of ATP inside the pipette did not alter the blocking effect of mibefradil. Therefore, we suggest that mibefradil directly inhibited the Kv current, independently of Ca²âº channel inhibition.


Assuntos
Artérias/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Vasos Coronários/efeitos dos fármacos , Mibefradil/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Animais , Anti-Hipertensivos/farmacologia , Artérias/citologia , Artérias/metabolismo , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Regulação para Baixo/efeitos dos fármacos , Cinética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Concentração Osmolar , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Coelhos
16.
Membranes (Basel) ; 12(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363664

RESUMO

The water transport through nanoporous multilayered graphene at 300k is investigated using molecular dynamics (MD) simulation with different water models in this study. We used functionalized and non-functionalized membranes along with five different 3-point rigid water models: SPC (simple point charge), SPC/E (extended simple point charge), TIP3P-FB (transferable intermolecular potential with 3 points-Force Balance), TIP3P-EW (transferable intermolecular potential with 3 points with Ewald summation) and OPC3 (3-point optimal point charge) water models. Based on our simulations with two water reservoirs and a porous multilayered graphene membrane in-between them, it is evident that the water transport varies significantly depending on the water model used, which is in good agreement with previous works. This study contributes to the selection of a water model for molecular dynamics simulations of water transport through multilayered porous graphene.

17.
Micromachines (Basel) ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296139

RESUMO

In the present work, the effects on water transport due to the orientation of the layer in the multilayered porous graphene and the different patterns formed when the layer is oriented to some degrees are studied for both circular and non-circular pore configurations. Interestingly, the five-layered graphene membrane with a layer separation of 3.5 Å used in this study shows that the water transport through multilayered porous graphene can be augmented by introducing an angle to certain layers of the multilayered membrane system.

18.
Membranes (Basel) ; 12(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35448365

RESUMO

Reverse electrodialysis (RED) generates power directly by transforming salinity gradient into electrical energy. The ion transport properties of the ion-exchange membranes need to be investigated deeply to improve the limiting efficiencies of the RED. The interaction between "counterions" and "ionic species" in the membrane requires a fundamental understanding of the phase separation process. Here, we report on sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/graphitic carbon nitride nanocomposites for RED application. We demonstrate that the rearrangement of the hydrophilic and hydrophobic domains in the semicrystalline polymer at a nanoscale level improves ion conduction. The rearrangement of the ionic species in polymer and "the functionalized nanosheet with ionic species" enhances the proton conduction in the hybrid membrane without a change in the structural integrity of the membrane. A detailed discussion has been provided on the membrane nanostructure, chemical configuration, structural robustness, surface morphology, and ion transport properties of the prepared hybrid membrane. Furthermore, the RED device was fabricated by combining synthesized cation exchange membrane with commercially available anion exchange membrane, NEOSEPTA, and a maximum power density of 0.2 W m-2 was successfully achieved under varying flow rates at the ambient condition.

19.
Free Radic Biol Med ; 189: 2-19, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35840016

RESUMO

Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.


Assuntos
Fator 2 Relacionado a NF-E2 , Receptor Tipo 1 de Angiotensina , Animais , Camundongos , Angiotensina II , Antioxidantes/farmacologia , Ginsenosídeos , Glutationa Peroxidase , Glutationa Peroxidase GPX1 , Proteínas Klotho , Losartan/farmacologia , Transtornos da Memória , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio
20.
Biochem Biophys Res Commun ; 411(2): 259-64, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21723260

RESUMO

Galectin-9 exhibited potent and selective eosinophil chemoattractant activity and attracted eosinophils in vitro and in vivo. Nasal polyposis is a chronic inflammatory disease of the upper airway characterized by the marked presence of inflammatory cells, particularly eosinophils. Thus, galectin-9 may be implicated in the pathogenesis of nasal polyposis. The study was designed to investigate whether interferon-gamma (IFN-γ) can induce the augmentation of galectin-9 expression and induce the expression of galectin-9 in nasal polyps. We examined the correlation between galectin-9 expression and eosinophil infiltration in nasal polyps. In addition, we identified the signaling pathways involved in the elevation of galectin-9 expression in response to IFN-γ. Our data demonstrate that the involvement of mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3 phosphate kinase (PI3K), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) may play important roles in the selective recruitment of eosinophils in nasal polyp tissues through the production of galectin-9. These findings suggest that galectin-9 expression is associated with eosinophil infiltration in polyps of patients with nasal polyposis.


Assuntos
Eosinófilos/imunologia , Galectinas/biossíntese , Interferon gama/imunologia , Janus Quinases/metabolismo , Pólipos Nasais/imunologia , Células Cultivadas , Eosinófilos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Humanos , Interferon gama/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA