Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 540(7631): 144-149, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27851729

RESUMO

Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Genoma/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Animais , Divisão Celular , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Terapia Genética/métodos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Homologia de Sequência
2.
Development ; 141(19): 3721-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25249462

RESUMO

Glia constitute the majority of cells in the mammalian central nervous system and are crucial for neurological function. However, there is an incomplete understanding of the molecular control of glial cell development. We find that the transcription factor Ascl1 (Mash1), which is best known for its role in neurogenesis, also functions in both astrocyte and oligodendrocyte lineages arising in the mouse spinal cord at late embryonic stages. Clonal fate mapping in vivo reveals heterogeneity in Ascl1-expressing glial progenitors and shows that Ascl1 defines cells that are restricted to either gray matter (GM) or white matter (WM) as astrocytes or oligodendrocytes. Conditional deletion of Ascl1 post-neurogenesis shows that Ascl1 is required during oligodendrogenesis for generating the correct numbers of WM but not GM oligodendrocyte precursor cells, whereas during astrocytogenesis Ascl1 functions in balancing the number of dorsal GM protoplasmic astrocytes with dorsal WM fibrous astrocytes. Thus, in addition to its function in neurogenesis, Ascl1 marks glial progenitors and controls the number and distribution of astrocytes and oligodendrocytes in the GM and WM of the spinal cord.


Assuntos
Astrócitos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula/fisiologia , Oligodendroglia/citologia , Medula Espinal/citologia , Medula Espinal/embriologia , Animais , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Imunofluorescência , Camundongos , Oligodendroglia/metabolismo
3.
Development ; 138(16): 3519-31, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21771810

RESUMO

The mechanisms of cell fate diversification in the retina are not fully understood. The seven principal cell types of the neural retina derive from a population of multipotent progenitors during development. These progenitors give rise to multiple cell types concurrently, suggesting that progenitors are a heterogeneous population. It is thought that differences in progenitor gene expression are responsible for differences in progenitor competence (i.e. potential) and, subsequently, fate diversification. To elucidate further the mechanisms of fate diversification, we assayed the expression of three transcription factors made by retinal progenitors: Ascl1 (Mash1), Ngn2 (Neurog2) and Olig2. We observed that progenitors were heterogeneous, expressing every possible combination of these transcription factors. To determine whether this progenitor heterogeneity correlated with different cell fate outcomes, we conducted Ascl1- and Ngn2-inducible expression fate mapping using the CreER™/LoxP system. We found that these two factors gave rise to markedly different distributions of cells. The Ngn2 lineage comprised all cell types, but retinal ganglion cells (RGCs) were exceedingly rare in the Ascl1 lineage. We next determined whether Ascl1 prevented RGC development. Ascl1-null mice had normal numbers of RGCs and, interestingly, we observed that a subset of Ascl1+ cells could give rise to cells expressing Math5 (Atoh7), a transcription factor required for RGC competence. Our results link progenitor heterogeneity to different fate outcomes. We show that Ascl1 expression defines a competence-restricted progenitor lineage in the retina, providing a new mechanism to explain fate diversification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Retina/embriologia , Retina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/citologia
4.
Development ; 138(19): 4131-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21852401

RESUMO

Studies of the olfactory epithelium model system have demonstrated that production of neurons is regulated by negative feedback. Previously, we showed that a locally produced signal, the TGFß superfamily ligand GDF11, regulates the genesis of olfactory receptor neurons by inhibiting proliferation of the immediate neuronal precursors (INPs) that give rise to them. GDF11 is antagonized by follistatin (FST), which is also produced locally. Here, we show that Fst(-/-) mice exhibit dramatically decreased neurogenesis, a phenotype that can only be partially explained by increased GDF11 activity. Instead, a second FST-binding factor, activin ßB (ACTßB), inhibits neurogenesis by a distinct mechanism: whereas GDF11 inhibits expansion of INPs, ACTßB inhibits expansion of stem and early progenitor cells. We present data supporting the concept that these latter cells, previously considered two distinct types, constitute a dynamic stem/progenitor population in which individual cells alternate expression of Sox2 and/or Ascl1. In addition, we demonstrate that interplay between ACTßB and GDF11 determines whether stem/progenitor cells adopt a glial versus neuronal fate. Altogether, the data indicate that the transition between stem cells and committed progenitors is neither sharp nor irreversible and that GDF11, ACTßB and FST are crucial components of a circuit that controls both total cell number and the ratio of neuronal versus glial cells in this system. Thus, our findings demonstrate a close connection between the signals involved in the control of tissue size and those that regulate the proportions of different cell types.


Assuntos
Ativinas/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Diferenciação de Crescimento/metabolismo , Células Neuroepiteliais/citologia , Mucosa Olfatória/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Proliferação de Células , Retroalimentação Fisiológica , Folistatina/metabolismo , Subunidades beta de Inibinas/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neuroglia/citologia , Neurônios/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
5.
J Neurosci ; 31(30): 11055-69, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21795554

RESUMO

Two recently generated targeted mouse alleles of the neurogenic gene Ascl1 were used to characterize cerebellum circuit formation. First, genetic inducible fate mapping (GIFM) with an Ascl1(CreER) allele was found to specifically mark all glial and neuron cell types that arise from the ventricular zone (vz). Moreover, each cell type has a unique temporal profile of marking with Ascl1(CreER) GIFM. Of great utility, Purkinje cells (Pcs), an early cohort of Bergmann glia, and four classes of GABAergic interneurons can be genetically birth dated during embryogenesis using Ascl1(CreER) GIFM. Astrocytes and oligodendrocytes, in contrast, express Ascl1(CreER) throughout their proliferative phase in the white matter. Interestingly, the final position each neuron type acquires differs depending on when it expresses Ascl1. Interneurons (including candelabrum) attain a more outside position the later they express Ascl1, whereas Pcs have distinct settling patterns each day they express Ascl1. Second, using a conditional Ascl1 allele, we discovered that Ascl1 is differentially required for generation of most vz-derived cells. Mice lacking Ascl1 in the cerebellum have a major decrease in three types of interneurons with a tendency toward a loss of later-born interneurons, as well as an imbalance of oligodendrocytes and astrocytes. Double-mutant analysis indicates that a related helix-loop-helix protein, Ptf1a, functions with Ascl1 in generating interneurons and Pcs. By fate mapping vz-derived cells in Ascl1 mutants, we further discovered that Ascl1 plays a specific role during the time period when Pcs are generated in restricting vz progenitors from becoming rhombic lip progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal , Cerebelo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Padronização Corporal/genética , Mapeamento Encefálico , Bromodesoxiuridina/metabolismo , Ciclo Celular , Proliferação de Células , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/classificação , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/citologia , Proteínas/genética , RNA não Traduzido , Coloração pela Prata/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Neuron ; 110(12): 1889-1890, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35709694

RESUMO

What are the cellular-level structural and functional changes underlying newly adaptive behaviors in the mammalian brain? In this issue of Neuron, Inada et al. (2022) identify the brain-wide connectivity and synaptic plasticity changes of hypothalamic oxytocin+ neurons in male mice contributing to their parental behaviors.


Assuntos
Plasticidade Neuronal , Neurônios , Animais , Encéfalo/fisiologia , Hipotálamo , Masculino , Mamíferos , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ocitocina/fisiologia
7.
Front Neuroanat ; 14: 58, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013329

RESUMO

The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.

8.
J Comp Neurol ; 528(1): 95-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31265129

RESUMO

Higher-order visual thalamus communicates broadly and bi-directionally with primary and extrastriate cortical areas in various mammals. In primates, the pulvinar is a topographically and functionally organized thalamic nucleus that is largely dedicated to visual processing. Still, a more granular connectivity map is needed to understand the role of thalamocortical loops in visually guided behavior. Similarly, the secondary visual thalamic nucleus in mice (the lateral posterior nucleus, LP) has extensive connections with cortex. To resolve the precise connectivity of these circuits, we first mapped mouse visual cortical areas using intrinsic signal optical imaging and then injected fluorescently tagged retrograde tracers (cholera toxin subunit B) into retinotopically-matched locations in various combinations of seven different visual areas. We find that LP neurons representing matched regions in visual space but projecting to different extrastriate areas are found in different topographically organized zones, with few double-labeled cells (~4-6%). In addition, V1 and extrastriate visual areas received input from the ventrolateral part of the laterodorsal nucleus of the thalamus (LDVL). These observations indicate that the thalamus provides topographically organized circuits to each mouse visual area and raise new questions about the contributions from LP and LDVL to cortical activity.


Assuntos
Mapeamento Encefálico/métodos , Núcleos Laterais do Tálamo/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Feminino , Núcleos Laterais do Tálamo/química , Masculino , Camundongos Endogâmicos C57BL , Córtex Visual/química , Vias Visuais/química
9.
Neuron ; 107(2): 274-282.e6, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32396852

RESUMO

Single-cell transcriptomics of neocortical neurons have revealed more than 100 clusters corresponding to putative cell types. For inhibitory and subcortical projection neurons (SCPNs), there is a strong concordance between clusters and anatomical descriptions of cell types. In contrast, cortico-cortical projection neurons (CCPNs) separate into surprisingly few transcriptomic clusters, despite their diverse anatomical projection types. We used projection-dependent single-cell transcriptomic analyses and monosynaptic rabies tracing to compare mouse primary visual cortex CCPNs projecting to different higher visual areas. We find that layer 2/3 CCPNs with different anatomical projections differ systematically in their gene expressions, despite forming only a single genetic cluster. Furthermore, these neurons receive feedback selectively from the same areas to which they project. These findings demonstrate that gene-expression analysis in isolation is insufficient to identify neuron types and have important implications for understanding the functional role of cortical feedback circuits.


Assuntos
Neurônios/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Retroalimentação , Feminino , Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/classificação , Vírus da Raiva , Transcriptoma , Córtex Visual/citologia , Córtex Visual/fisiologia
10.
Mol Cell Neurosci ; 38(4): 595-606, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18585058

RESUMO

Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Linhagem da Célula/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Sistema Nervoso Central/metabolismo , Núcleos Cerebelares/citologia , Núcleos Cerebelares/metabolismo , Núcleos Cerebelares/fisiologia , Feminino , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Camundongos Transgênicos , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Gravidez , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia
11.
J Neurosci ; 27(47): 12764-74, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18032648

RESUMO

In the adult mammalian brain, new neurons and glia are continuously generated but molecular factors regulating their differentiation and lineage relationships are largely unknown. We show that Ascl1, a bHLH (basic helix-loop-helix) transcription factor, transiently labels neuronal and oligodendrocyte precursors in the adult brain. Using in vivo lineage tracing with inducible Cre recombinase, we followed the maturation of these precursors in four distinct regions. In the hippocampus, Ascl1 mostly marks type-2a progenitor cells with some late stage type-1 stem cells. Thirty days after Ascl1 expression, although a majority of the cells matured to granule neurons, a few cells remained as immature progenitors. By 6 months, however, essentially all Ascl1 lineage cells were granule neurons. In contrast, in the olfactory bulb neuronal lineage, Ascl1 is restricted to transit amplifying cells, and by 30 d all cells matured into GABAergic interneurons. Ascl1 also broadly marks oligodendrocyte precursors in subcortical gray and white matter regions. In the corpus callosum, Ascl1 defines a ventral layer of early oligodendrocyte precursors that do not yet express other early markers of this lineage like PDGFRalpha and Olig2. By 30 d, most had transitioned to mature oligodendrocytes. In contrast, Ascl1 expressing oligodendrocyte precursors in gray matter already coexpressed the early oligodendrocyte markers, but by 30 d they mostly remained as precursors. Our results reveal that Ascl1 is a common molecular marker of early progenitors of both neurons and oligodendrocytes in the adult brain, and these Ascl1 defined progenitors mature with distinct dynamics in different brain regions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Diferenciação Celular/fisiologia , Neuroglia/citologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/metabolismo , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Transgênicos , Neuroglia/química , Neuroglia/fisiologia , Neurônios/fisiologia , Células-Tronco/química , Células-Tronco/fisiologia
12.
Cell Rep ; 15(4): 692-699, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27149846

RESUMO

Monosynaptic rabies virus tracing is a unique and powerful tool used to identify neurons making direct presynaptic connections onto neurons of interest across the entire nervous system. Current methods utilize complementation of glycoprotein gene-deleted rabies of the SAD B19 strain with its glycoprotein, B19G, to mediate retrograde transsynaptic spread across a single synaptic step. In most conditions, this method labels only a fraction of input neurons and would thus benefit from improved efficiency of transsynaptic spread. Here, we report newly engineered glycoprotein variants to improve transsynaptic efficiency. Among them, oG (optimized glycoprotein) is a codon-optimized version of a chimeric glycoprotein consisting of the transmembrane/cytoplasmic domain of B19G and the extracellular domain of rabies Pasteur virus strain glycoprotein. We demonstrate that oG increases the tracing efficiency for long-distance input neurons up to 20-fold compared to B19G. oG-mediated rabies tracing will therefore allow identification and study of more complete monosynaptic input neural networks.

13.
Neuron ; 88(6): 1253-1267, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26671462

RESUMO

Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception.


Assuntos
Rede Nervosa/citologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia
14.
J Comp Neurol ; 519(7): 1355-70, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21452201

RESUMO

Neurog1 (Ngn1, Neurod3, neurogenin1) is a basic helix-loop-helix (bHLH) transcription factor essential for neuronal differentiation and subtype specification during embryogenesis. Due to the transient expression of Neurog1 and extensive migration of neuronal precursors, it has been challenging to understand the full complement of Neurog1 lineage cells throughout the central nervous system (CNS). Here we labeled and followed Neurog1 lineages using inducible Cre-flox recombination systems with Neurog1-Cre and Neurog1-CreER(T2) BAC (bacterial artificial chromosome) transgenic mice. Neurog1 lineage cells are restricted to neuronal fates and contribute to diverse but discrete populations in each brain region. In the forebrain, Neurog1 lineages include mitral cells and glutamatergic interneurons in the olfactory bulb, pyramidal and granule neurons in the hippocampus, and pyramidal cells in the cortex. In addition, most of the thalamus, but not the hypothalamus, arises from Neurog1 progenitors. Although Neurog1 lineages are largely restricted to glutamatergic neurons, there are multiple exceptions including Purkinje cells and other GABAergic neurons in the cerebellum. This study provides the first overview of the spatiotemporal fate map of Neurog1 lineages in the CNS.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mapeamento Encefálico , Diferenciação Celular/fisiologia , Linhagem da Célula , Antagonistas de Estrogênios/farmacologia , Feminino , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Tamoxifeno/farmacologia
15.
PLoS One ; 6(3): e18472, 2011 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-21483754

RESUMO

Ascl1 (Mash1) is a bHLH transcription factor essential for neural differentiation during embryogenesis but its role in adult neurogenesis is less clear. Here we show that in the adult brain Ascl1 is dynamically expressed during neurogenesis in the dentate gyrus subgranular zone (SGZ) and more rostral subventricular zone (SVZ). Specifically, we find Ascl1 levels low in SGZ Type-1 cells and SVZ B cells but increasing as the cells transition to intermediate progenitor stages. In vivo genetic lineage tracing with a tamoxifen (TAM) inducible Ascl1CreERT2 knock-in mouse strain shows that Ascl1 lineage cells continuously generate new neurons over extended periods of time. There is a regionally-specific difference in neuron generation, with mice given TAM at postnatal day 50 showing new dentate gyrus neurons through 30 days post-TAM, but showing new olfactory bulb neurons even 180 days post-TAM. These results show that Ascl1 is not restricted to transit amplifying populations but is also found in a subset of neural stem cells with long-term neurogenic potential in the adult brain.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurogênese/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética
16.
Development ; 134(2): 285-93, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17166924

RESUMO

The neural basic helix-loop-helix transcription factor Ascl1 (previously Mash1) is present in ventricular zone cells in restricted domains throughout the developing nervous system. This study uses genetic fate mapping to define the stage and neural lineages in the developing spinal cord that are derived from Ascl1-expressing cells. We find that Ascl1 is present in progenitors to both neurons and oligodendrocytes, but not astrocytes. Temporal control of the fate-mapping paradigm reveals rapid cell-cycle exit and differentiation of Ascl1-expressing cells. At embryonic day 11, Ascl1 identifies neuronal-restricted precursor cells that become dorsal horn neurons in the superficial laminae. By contrast, at embryonic day 16, Ascl1 identifies oligodendrocyte-restricted precursor cells that distribute throughout the spinal cord. These data demonstrate that sequentially generated Ascl1-expressing progenitors give rise first to dorsal horn interneurons and subsequently to late-born oligodendrocytes. Furthermore, Ascl1-null cells in the spinal cord have a diminished capacity to undergo neuronal differentiation, with a subset of these cells retaining characteristics of immature glial cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Diferenciação Celular , Primers do DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Integrases/biossíntese , Integrases/genética , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Medula Espinal/citologia , Tamoxifeno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA