RESUMO
Animal sound classification (ASC) refers to the automatic identification of animal categories by sound, and is useful for monitoring rare or elusive wildlife. Thus far, deep-learning-based models have shown good performance in ASC when training data is sufficient, but suffer from severe performance degradation if not. Recently, generative adversarial networks (GANs) have shown the potential to solve this problem by generating virtual data. However, in a multi-class environment, existing GAN-based methods need to construct separate generative models for each class. Additionally, they only consider the waveform or spectrogram of sound, resulting in poor quality of the generated sound. To overcome these shortcomings, we propose a two-step sound augmentation scheme using a class-conditional GAN. First, common features are learned from all classes of animal sounds, and multiple classes of animal sounds are generated based on the features that consider both waveforms and spectrograms using class-conditional GAN. Second, we select data from the generated data based on the confidence of the pretrained ASC model to improve classification performance. Through experiments, we show that the proposed method improves the accuracy of the basic ASC model by up to 18.3%, which corresponds to a performance improvement of 13.4% compared to the second-best augmentation method.
Assuntos
Animais Selvagens , Aprendizagem , Animais , Modelos Animais , SomRESUMO
Transcription factors (TFs) are major trans-acting factors in transcriptional regulation. Therefore, elucidating TF-target interactions is a key step toward understanding the regulatory circuitry underlying complex traits such as human diseases. We previously published a reference TF-target interaction database for humans-TRRUST (Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining)-which was constructed using sentence-based text mining, followed by manual curation. Here, we present TRRUST v2 (www.grnpedia.org/trrust) with a significant improvement from the previous version, including a significantly increased size of the database consisting of 8444 regulatory interactions for 800 TFs in humans. More importantly, TRRUST v2 also contains a database for TF-target interactions in mice, including 6552 TF-target interactions for 828 mouse TFs. TRRUST v2 is also substantially more comprehensive and less biased than other TF-target interaction databases. We also improved the web interface, which now enables prioritization of key TFs for a physiological condition depicted by a set of user-input transcriptional responsive genes. With the significant expansion in the database size and inclusion of the new web tool for TF prioritization, we believe that TRRUST v2 will be a versatile database for the study of the transcriptional regulation involved in human diseases.