Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731876

RESUMO

This study explores the impact of defecation frequency on the gut microbiome structure by analyzing fecal samples from individuals categorized by defecation frequency: infrequent (1-3 times/week, n = 4), mid-frequent (4-6 times/week, n = 7), and frequent (daily, n = 9). Utilizing 16S rRNA gene-based sequencing and LC-MS/MS metabolome profiling, significant differences in microbial diversity and community structures among the groups were observed. The infrequent group showed higher microbial diversity, with community structures significantly varying with defecation frequency, a pattern consistent across all sampling time points. The Ruminococcus genus was predominant in the infrequent group, but decreased with more frequent defecation, while the Bacteroides genus was more common in the frequent group, decreasing as defecation frequency lessened. The infrequent group demonstrated enriched biosynthesis genes for aromatic amino acids and branched-chain amino acids (BCAAs), in contrast to the frequent group, which had a higher prevalence of genes for BCAA catabolism. Metabolome analysis revealed higher levels of metabolites derived from aromatic amino acids and BCAA metabolism in the infrequent group, and lower levels of BCAA-derived metabolites in the frequent group, consistent with their predicted metagenomic functions. These findings underscore the importance of considering stool consistency/frequency in understanding the factors influencing the gut microbiome.


Assuntos
Defecação , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Microbioma Gastrointestinal/genética , Humanos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Masculino , Adulto , Feminino , Metaboloma , Biodiversidade , Aminoácidos de Cadeia Ramificada/metabolismo , Metabolômica/métodos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bacteroides/genética , Metagenoma
2.
Microbiol Resour Announc ; 12(7): e0008023, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37289067

RESUMO

We report the complete genome sequence of Phenylobacterium sp. strain NIBR 498073. The sample was isolated from sediment from a tidal flat in Incheon, South Korea. The whole genome consists of one circular chromosome of 4,289,989 bp, and annotation using PGAP predicted 4,160 protein coding genes, 47 tRNAs, 6 rRNAs, and 3 noncoding RNAs.

3.
J Microbiol Biotechnol ; 33(2): 219-227, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524338

RESUMO

Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.


Assuntos
Lactuca , Microbiota , Lactuca/microbiologia , Estações do Ano , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , Bactérias
4.
J Microbiol Biotechnol ; 31(12): 1709-1715, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34675140

RESUMO

Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.


Assuntos
Colífagos/isolamento & purificação , Monitoramento Ambiental/métodos , Contaminação de Alimentos/análise , Animais , Colífagos/genética , DNA Viral/genética , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar/virologia , Frutos do Mar/virologia , Ensaio de Placa Viral , Viroma/genética
5.
Front Microbiol ; 11: 2099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013766

RESUMO

The maternal vaginal microbiome is an important source for infant gut microbiome development. However, infants delivered by Cesarean section (CS) do not contact the maternal vaginal microbiome and this delivery method may perturb the early establishment and development of the gut microbiome. The aim of this study was to investigate the early gut microbiota of Korean newborns receiving the same postpartum care services for two weeks after birth by delivery mode using fecal samples collected at days 3, 7, and 14. Early gut microbiota development patterns were examined using 16S rRNA gene-based sequencing from 132 infants either born vaginally (VD, n = 64) or via Cesarean section (CS, n = 68). VD-born neonates showed increased alpha diversity in infant fecal samples collated at days 7 and 14 compared to those from day 3, while those of CS infants did not differ (p < 0.015). Bacterial structures of infants from both groups separated at day 7 (p < 0.001) and day 14 (p < 0.01). The bacterial structure of VD infants gradually changed over time (day 3 vs. day 7, p < 0.012; day 3 vs. day 14, p < 0.001). Day 14 samples of CS infants differed from day 3 and 7 samples (day 3 vs. day 14, p < 0.001). VD infant relative abundance of Bifidobacterium (days 7, 14), Bacteroides (days 7, 14), and Lachnospiraceae (day 7) significantly increased compared to CS infants, with a lower abundance of Enterobacteriaceae (found in all periods of the CS group) (LDA > 3.0). Relative abundances of Bifidobacterium, Lactobacillus, and Staphylococcus were significantly increased in both VD and CS groups at day 14 (LDA > 3.0). Predicted functional analysis showed that VD infants had overrepresented starch/sucrose, amino acid and nucleotide metabolism in gut microbiota with depleted lipopolysaccharide biosynthesis until day 14 compared to CS infants. This study confirmed that delivery mode is the major determinant of neonatal intestinal microbiome establishment and provides a profile of microbiota perturbations in CS infants. Our findings provide preliminary insight for establishing recovery methods to supply the specific microbes missing in CS infants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA