Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 148(1): 47-67, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199168

RESUMO

BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo
2.
Am J Physiol Endocrinol Metab ; 327(1): E69-E80, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717361

RESUMO

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of AGPAT3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole body metabolism has not been investigated. We found that male Agpat3 knockout (KO) mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3-deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3-deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.NEW & NOTEWORTHY AGPAT3 deficiency results in male-specific growth retardation. It reduces adipose tissue mass but does not significantly impact glucose homeostasis or energy balance, except for influencing water intake in mice. Like AGPAT2, AGPAT3 is upregulated during adipogenesis, potentially by peroxisome proliferator-activated receptor gamma (PPARγ). Loss of AGPAT3 impairs adipocyte differentiation, which could be rescued by pioglitazone. Overall, AGPAT3 plays a significant role in regulating adipose tissue mass, partially involving its influence on adipocyte differentiation.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Adipócitos , Camundongos Knockout , Animais , Feminino , Masculino , Camundongos , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Adipócitos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular , Metabolismo Energético/genética , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Fenótipo , Termogênese/genética , Magreza/metabolismo , Magreza/genética
3.
Pharmacol Res ; 203: 107156, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522762

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Assuntos
Aterosclerose , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Receptor A2A de Adenosina , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Masculino , Camundongos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos Knockout , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais
4.
Circulation ; 146(19): 1444-1460, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073366

RESUMO

BACKGROUND: Proliferation of vascular smooth muscle cells (VSMCs) is a hallmark of arterial diseases, especially in arterial restenosis after angioplasty or stent placement. VSMCs reprogram their metabolism to meet the increased requirements of lipids, proteins, and nucleotides for their proliferation. De novo purine synthesis is one of critical pathways for nucleotide synthesis. However, its role in proliferation of VSMCs in these arterial diseases has not been defined. METHODS: De novo purine synthesis in proliferative VSMCs was evaluated by liquid chromatography-tandem mass spectrometry. The expression of ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase), the critical bifunctional enzyme in the last 2 steps of the de novo purine synthesis pathway, was assessed in VSMCs of proliferative arterial neointima. Global and VSMC-specific knockout of Atic mice were generated and used for examining the role of ATIC-associated purine metabolism in the formation of arterial neointima and atherosclerotic lesions. RESULTS: In this study, we found that de novo purine synthesis was increased in proliferative VSMCs. Upregulated purine synthesis genes, including ATIC, were observed in the neointima of the injured vessels and atherosclerotic lesions both in mice and humans. Global or specific knockout of Atic in VSMCs inhibited cell proliferation, attenuating the arterial neointima in models of mouse atherosclerosis and arterial restenosis. CONCLUSIONS: These results reveal that de novo purine synthesis plays an important role in VSMC proliferation in arterial disease. These findings suggest that targeting ATIC is a promising therapeutic approach to combat arterial diseases.


Assuntos
Aterosclerose , Hidroximetil e Formil Transferases , Humanos , Camundongos , Animais , Neointima , Purinas , Proliferação de Células , Miócitos de Músculo Liso , Aterosclerose/genética
5.
Clin Sci (Lond) ; 136(5): 309-321, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35132998

RESUMO

Prostaglandin D2 (PGD2) released from immune cells or other cell types activates its receptors, D prostanoid receptor (DP)1 and 2 (DP1 and DP2), to promote inflammatory responses in allergic and lung diseases. Prostaglandin-mediated inflammation may also contribute to vascular diseases such as abdominal aortic aneurysm (AAA). However, the role of DP receptors in the pathogenesis of AAA has not been systematically investigated. In the present study, DP1-deficient mice and pharmacological inhibitors of either DP1 or DP2 were tested in two distinct mouse models of AAA formation: angiotensin II (AngII) infusion and calcium chloride (CaCl2) application. DP1-deficient mice [both heterozygous (DP1+/-) and homozygous (DP1-/-)] were protected against CaCl2-induced AAA formation, in conjunction with decreased matrix metallopeptidase (MMP) activity and adventitial inflammatory cell infiltration. In the AngII infusion model, DP1+/- mice, but not DP1-/- mice, exhibited reduced AAA formation. Interestingly, compensatory up-regulation of the DP2 receptor was detected in DP1-/- mice in response to AngII infusion, suggesting a potential role for DP2 receptors in AAA. Treatment with selective antagonists of DP1 (laropiprant) or DP2 (fevipiprant) protected against AAA formation, in conjunction with reduced elastin degradation and aortic inflammatory responses. In conclusion, PGD2 signaling contributes to AAA formation in mice, suggesting that antagonists of DP receptors, which have been extensively tested in allergic and lung diseases, may be promising candidates to ameliorate AAA.


Assuntos
Aneurisma da Aorta Abdominal/etiologia , Receptores Imunológicos/fisiologia , Receptores de Prostaglandina/fisiologia , Angiotensina II/farmacologia , Animais , Aneurisma da Aorta Abdominal/prevenção & controle , Masculino , Camundongos , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores
6.
Pharmacol Res ; 182: 106354, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35842184

RESUMO

Perivascular adipose tissue (PVAT) resides at the outermost boundary of the vascular wall, surrounding most conduit blood vessels, except for the cerebral vessels, in humans. A growing body of evidence suggests that inflammation localized within PVAT may contribute to the pathogenesis of cardiovascular disease (CVD). Patients with autoimmune rheumatic diseases (ARDs), e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis, etc., exhibit heightened systemic inflammation and are at increased risk for CVD. Data from clinical studies in patients with ARDs support a linkage between dysfunctional adipose tissue, and PVAT in particular, in disease pathogenesis. Here, we review the data linking PVAT to the pathogenesis of CVD in patients with ARDs, focusing on the role of novel PVAT imaging techniques in defining disease risk and responses to biological therapies.


Assuntos
Doenças Autoimunes , Doenças Cardiovasculares , Síndrome do Desconforto Respiratório , Doenças Reumáticas , Tecido Adiposo/fisiologia , Doenças Autoimunes/complicações , Doenças Cardiovasculares/patologia , Humanos , Inflamação
7.
Arterioscler Thromb Vasc Biol ; 40(11): 2569-2576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32878476

RESUMO

Atherosclerosis is orchestrated by complex interactions between vascular and inflammatory cells. Traditionally, it has been considered to be an intimal inflammatory disease, characterized by endothelial dysfunction, inflammatory cell recruitment, lipid oxidation, and foam cell formation. This inside-out signaling paradigm has been accepted as dogma for many years, despite the fact that inflammatory cells are far more prevalent in the adventitia compared with the intima. For decades, the origin of adventitial inflammation in atherosclerosis was unknown. The fact that these inflammatory cells were observed to cluster at the margin of perivascular adipose tissues-a unique and highly inflammatory adipose depot that surrounds most atherosclerosis-prone blood vessels-has stimulated interest in perivascular adipose tissue-mediated outside-in signaling in vascular pathophysiology, including atherosclerosis. The phenotype of perivascular adipocytes underlies the functional characteristics of this depot, including its role in adventitial inflammatory cell recruitment, trafficking to the intima via the vasa vasorum, and atherosclerosis perturbation. This review is focused on emerging concepts pertaining to outside-in signaling in atherosclerosis driven by dysfunctional perivascular adipose tissues during diet-induced obesity and recent strategies for atherosclerosis prediction and prognostication based upon this hypothesis.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Aterosclerose/metabolismo , Vasos Sanguíneos/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Comunicação Celular , Humanos , Inflamação/patologia , Inflamação/fisiopatologia , Placa Aterosclerótica , Transdução de Sinais
8.
J Biol Chem ; 294(21): 8577-8591, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30971429

RESUMO

Enhancer of zeste homolog 2 (EZH2), an epigenetic regulator that plays a key role in cell differentiation and oncogenesis, was reported to promote adipogenic differentiation in vitro by catalyzing trimethylation of histone 3 lysine 27. However, inhibition of EZH2 induced lipid accumulation in certain cancer and hepatocyte cell lines. To address this discrepancy, we investigated the role of EZH2 in adipogenic differentiation and lipid metabolism using primary human and mouse preadipocytes and adipose-specific EZH2 knockout (KO) mice. We found that the EZH2-selective inhibitor GSK126 induced lipid accumulation in human adipocytes, without altering adipocyte differentiation marker gene expression. Moreover, adipocyte-specific EZH2 KO mice, generated by crossing EZH2 floxed mice with adiponectin-Cre mice, displayed significantly increased body weight, adipose tissue mass, and adipocyte cell size and reduced very low-density lipoprotein (VLDL) levels, as compared with littermate controls. These phenotypic alterations could not be explained by differences in feeding behavior, locomotor activity, metabolic energy expenditure, or adipose lipolysis. In addition, human adipocytes treated with either GSK126 or vehicle exhibited comparable rates of glucose-stimulated triglyceride accumulation and fatty acid uptake. Mechanistically, lipid accumulation induced by GSK126 in adipocytes was lipoprotein-dependent, and EZH2 inhibition or gene deletion promoted lipoprotein-dependent lipid uptake in vitro concomitant with up-regulated apolipoprotein E (ApoE) gene expression. Deletion of ApoE blocked the effects of GSK126 to promote lipoprotein-dependent lipid uptake in murine adipocytes. Collectively, these results indicate that EZH2 inhibition promotes lipoprotein-dependent lipid accumulation via inducing ApoE expression in adipocytes, suggesting a novel mechanism of lipid regulation by EZH2.


Assuntos
Adipócitos/metabolismo , Apolipoproteínas E/metabolismo , Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lipogênese , Lipólise , Adipócitos/citologia , Animais , Apolipoproteínas E/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Camundongos , Regulação para Cima
9.
Clin Sci (Lond) ; 134(1): 3-13, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31898749

RESUMO

Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells that communicate via adipocytokines and other signaling mediators with the nearby vessel wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells in the blood vessel wall is vital for normal vascular function and becomes perturbed in diseases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occurring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have advanced our understanding of the role of perivascular adipocytes in modulating vascular function. However, their impact on cardiovascular disease (CVD), particularly in humans, is yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging strategies for evaluation and treatment of CVD based on PVAT biology.


Assuntos
Adipócitos/patologia , Tecido Adiposo/metabolismo , Aterosclerose/patologia , Inflamação/metabolismo , Adipocinas/metabolismo , Animais , Aterosclerose/metabolismo , Humanos , Inflamação/fisiopatologia , Obesidade/patologia , Obesidade/fisiopatologia
10.
Arterioscler Thromb Vasc Biol ; 39(11): 2220-2227, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510794

RESUMO

Perivascular adipocytes residing in the vascular adventitia are recognized as distinct endocrine cells capable of responding to inflammatory stimuli and communicating with the sympathetic nervous system and adjacent blood vessel cells, thereby releasing adipocytokines and other signaling mediators to maintain vascular homeostasis. Perivascular adipocytes exhibit phenotypic heterogeneity (both white and brown adipocytes) and become dysfunctional in conditions, such as diet-induced obesity, thus promoting vascular inflammation, vasoconstriction, and smooth muscle cell proliferation to potentially contribute to the development of vascular diseases, such as atherosclerosis, hypertension, and aortic aneurysms. Although accumulating data have advanced our understanding of the role of perivascular adipocytes in modulating vascular function, their impact on vascular disease, particularly in humans, remains to be fully defined. This brief review will discuss the mechanisms whereby perivascular adipocytes regulate vascular disease, with a particular emphasis on recent findings and current limitations in the field of research.


Assuntos
Adipócitos/fisiologia , Endotélio Vascular/fisiopatologia , Doenças Vasculares/fisiopatologia , Adipocinas/fisiologia , Animais , Angiografia por Tomografia Computadorizada , Humanos , Obesidade/fisiopatologia , Fenótipo , Transdução de Sinais , Doenças Vasculares/diagnóstico por imagem , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
11.
Arterioscler Thromb Vasc Biol ; 39(6): 984-990, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070469

RESUMO

Epigenetic regulatory mechanisms, encompassing diverse molecular processes including DNA methylation, histone post-translational modifications, and noncoding RNAs, are essential to numerous processes such as cell differentiation, growth and development, environmental adaptation, aging, and disease states. In many cases, epigenetic changes occur in response to environmental cues and lifestyle factors, resulting in persistent changes in gene expression that affect vascular disease risk during the lifetime of the individual. Biological aging-a powerful cardiovascular risk factor-is partly genetically determined yet strongly influenced by traditional risk factors, reflecting epigenetic modulation. Quantification of specific DNA methylation patterns may serve as an accurate predictor of biological age-a concept known as the epigenetic clock, which could help to refine cardiovascular risk assessment. Epigenetic reprogramming of monocytes rewires cellular immune signaling and induces a metabolic shift toward aerobic glycolysis, thereby increasing innate immune responses. This form of trained epigenetic memory can be maladaptive, thus augmenting vascular inflammation. Somatic mutations in epigenetic regulatory enzymes lead to clonal hematopoiesis of indeterminate potential, a precursor of hematologic malignancies and a recently recognized cardiovascular risk factor; moreover, epigenetic regulators are increasingly being targeted in cancer therapeutics. Thus, understanding epigenetic regulatory mechanisms lies at the intersection between cancer and cardiovascular disease and is of paramount importance to the burgeoning field of cardio-oncology (Graphic Abstract).


Assuntos
Doenças Cardiovasculares/genética , Metilação de DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Envelhecimento/genética , Diferenciação Celular/genética , Epigênese Genética/fisiologia , Epigenômica , Humanos , Imunidade Celular/genética , RNA não Traduzido/genética , Sensibilidade e Especificidade
12.
Arterioscler Thromb Vasc Biol ; 39(11): 2320-2337, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554420

RESUMO

OBJECTIVE: Copper (Cu) is essential micronutrient, and its dysregulation is implicated in aortic aneurysm (AA) development. The Cu exporter ATP7A (copper-transporting P-type ATPase/Menkes ATPase) delivers Cu via the Cu chaperone Atox1 (antioxidant 1) to secretory Cu enzymes, such as lysyl oxidase, and excludes excess Cu. Lysyl oxidase is shown to protect against AA formation. However, the role and mechanism of ATP7A in AA pathogenesis remain unknown. Approach and Results: Here, we show that Cu chelator markedly inhibited Ang II (angiotensin II)-induced abdominal AA (AAA) in which ATP7A expression was markedly downregulated. Transgenic ATP7A overexpression prevented Ang II-induced AAA formation. Conversely, Cu transport dysfunctional ATP7Amut/+/ApoE-/- mice exhibited robust AAA formation and dissection, excess aortic Cu accumulation as assessed by X-ray fluorescence microscopy, and reduced lysyl oxidase activity. In contrast, AAA formation was not observed in Atox1-/-/ApoE-/- mice, suggesting that decreased lysyl oxidase activity, which depends on both ATP7A and Atox1, was not sufficient to develop AAA. Bone marrow transplantation suggested importance of ATP7A in vascular cells, not bone marrow cells, in AAA development. MicroRNA (miR) array identified miR-125b as a highly upregulated miR in AAA from ATP7Amut/+/ApoE-/- mice. Furthermore, miR-125b target genes (histone methyltransferase Suv39h1 and the NF-κB negative regulator TNFAIP3 [tumor necrosis factor alpha induced protein 3]) were downregulated, which resulted in increased proinflammatory cytokine expression, aortic macrophage recruitment, MMP (matrix metalloproteinase)-2/9 activity, elastin fragmentation, and vascular smooth muscle cell loss in ATP7Amut/+/ApoE-/- mice and reversed by locked nucleic acid-anti-miR-125b infusion. CONCLUSIONS: ATP7A downregulation/dysfunction promotes AAA formation via upregulating miR-125b, which augments proinflammatory signaling in a Cu-dependent manner. Thus, ATP7A is a potential therapeutic target for inflammatory vascular disease.


Assuntos
Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/fisiopatologia , ATPases Transportadoras de Cobre/fisiologia , MicroRNAs/fisiologia , Angiotensina II/efeitos dos fármacos , Animais , Apoptose , Células Cultivadas , Quelantes/farmacologia , Cobre/metabolismo , Proteínas de Transporte de Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Inflamação/genética , Inflamação/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/metabolismo , Molibdênio/farmacologia , Músculo Liso Vascular/citologia , Regulação para Cima
13.
Adv Exp Med Biol ; 1155: 239-248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468403

RESUMO

The effects of taurine have been characterized primarily in mammals, and insects are not generally used to study taurine. In this study, ants were used to examine the effect of taurine on eusociality. Ants are the principal models for studying eusociality and superorganisms. Japanese carpenter ants (Camponotus japonicus) were fed a taurine-supplemented diet and tested using ant eusocial indexes. Ant farm structures were constructed using transparent PET bottles containing autoclaved soil. Three categories of vital index were used to study the effect of taurine on group activity: creation of formicaries (residence chambers), cooperative defense efforts, and population density (or group size and composition). Control, low-, and high-taurine diets were prepared using three different levels of taurine in sucrose powder: 0, 5, and 20% (g/g), respectively. The cooperative defense efforts against exogenous queen ants were recorded daily. The high-taurine group took less time to complete their defense formation than the other groups. At least 16% more formicaries (chambers) were observed in the taurine-fed groups than in the control. There were evident differences between control and taurine-fed groups in the total numbers of ants and eggs. The taurine-fed group sustained higher total numbers of ants, excluding the queen. Taurine-fed groups showed a significant increase both in the number of workers and eggs. When fed with taurine, ants responded positively on the eusocial vitality indexes. These results show that taurine exerts a positive effect on the eusociality of ants at the level of the superorganism.


Assuntos
Formigas/fisiologia , Comportamento Animal , Comportamento Social , Taurina/farmacologia , Animais , Comportamento Cooperativo
14.
J Biol Chem ; 292(15): 6312-6324, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242765

RESUMO

Impaired adipogenic differentiation during diet-induced obesity (DIO) promotes adipocyte hypertrophy and inflammation, thereby contributing to metabolic disease. Adenomatosis polyposis coli down-regulated 1 (APCDD1) has recently been identified as an inhibitor of Wnt signaling, a key regulator of adipogenic differentiation. Here we report a novel role for APCDD1 in adipogenic differentiation via repression of Wnt signaling and an epigenetic linkage between miR-130 and APCDD1 in DIO. APCDD1 expression was significantly up-regulated in mature adipocytes compared with undifferentiated preadipocytes in both human and mouse subcutaneous adipose tissues. siRNA-based silencing of APCDD1 in 3T3-L1 preadipocytes markedly increased the expression of Wnt signaling proteins (Wnt3a, Wnt5a, Wnt10b, LRP5, and ß-catenin) and inhibited the expression of adipocyte differentiation markers (CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)) and lipid droplet accumulation, whereas adenovirus-mediated overexpression of APCDD1 enhanced adipogenic differentiation. Notably, DIO mice exhibited reduced APCDD1 expression and increased Wnt expression in both subcutaneous and visceral adipose tissues and impaired adipogenic differentiation in vitro Mechanistically, we found that miR-130, whose expression is up-regulated in adipose tissues of DIO mice, could directly target the 3'-untranslated region of the APCDD1 gene. Furthermore, transfection of an miR-130 inhibitor in preadipocytes enhanced, whereas an miR-130 mimic blunted, adipogenic differentiation, suggesting that miR-130 contributes to impaired adipogenic differentiation during DIO by repressing APCDD1 expression. Finally, human subcutaneous adipose tissues isolated from obese individuals exhibited reduced expression of APCDD1, C/EBPα, and PPARγ compared with those from non-obese subjects. Taken together, these novel findings suggest that APCDD1 positively regulates adipogenic differentiation and that its down-regulation by miR-130 during DIO may contribute to impaired adipogenic differentiation and obesity-related metabolic disease.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Membrana/biossíntese , Obesidade/metabolismo , Via de Sinalização Wnt , Células 3T3-L1 , Adipócitos/patologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Dieta/efeitos adversos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
15.
Lab Invest ; 98(10): 1300-1310, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29572498

RESUMO

High-fat meal (HFM) consumption can produce acute lipemia and trigger myocardial infarction in patients with atherosclerosis, but the mechanisms are poorly understood. Erythrocytes (red blood cells, RBCs) intimately interact with inflammatory cells and blood vessels and play a complex role in regulating vascular function. Chronic high-fat feeding in mice induces pathological RBC remodeling, suggesting a novel link between HFM, RBCs, and vascular dysfunction. However, whether acute HFM can induce RBC remodeling in humans is unknown. Ten healthy individuals were subjected to biochemical testing and assessment of endothelial-dependent flow-mediated dilation (FMD) before and after a single HFM or iso-caloric meal (ICM). Following the HFM, triglyceride, cholesterol, and free fatty acid levels were all significantly increased, in conjunction with impaired post-prandial FMD. Additionally, peripheral blood smears demonstrated microcytes, remodeled RBCs, and fatty monocytes. Increased intracellular ROS and nitration of protein band 3 was detected in RBCs following the HFM. The HFM elevated plasma and RBC-bound myeloperoxidase (MPO), which was associated with impaired FMD and oxidation of HDL. Monocytic cells exposed to lipid in vitro released MPO, while porcine coronary arteries exposed to fatty acids ex vivo took up MPO. We demonstrate in humans that a single HFM induces pathological RBC remodeling and concurrently elevates MPO, which can potentially enter the blood vessel wall to trigger oxidative stress and destabilize vulnerable plaques. These novel findings may have implications for the short-term risk of HFM consumption and alimentary lipemia in patients with atherosclerosis.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endotélio Vascular/fisiologia , Eritrócitos/fisiologia , Adulto , Animais , Sedimentação Sanguínea , Vasos Coronários/metabolismo , Humanos , Masculino , Peroxidase/sangue , Suínos , Adulto Jovem
16.
Cardiovasc Drugs Ther ; 32(5): 503-510, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097828

RESUMO

PURPOSE: Perivascular adipose tissue (PVAT) surrounds the arterial adventitia and plays an important role in vascular homeostasis. PVAT expands in obesity, and inflamed PVAT can locally promote endothelial dysfunction and atherosclerosis. Here, using adipose tissue transplantation, we tested the hypothesis that expansion of PVAT can also remotely exacerbate vascular disease. METHODS: Fifty milligrams of abdominal aortic PVAT was isolated from high-fat diet (HFD)-fed wild-type mice and transplanted onto the abdominal aorta of lean LDL receptor knockout mice. Subcutaneous and visceral adipose tissues were used as controls. After HFD feeding for 10 weeks, body weight, glucose/insulin sensitivity, and lipid levels were measured. Adipocytokine gene expression was assessed in the transplanted adipose tissues, and the thoracic aorta was harvested to quantify atherosclerotic lesions by Oil-Red O staining and to assess vasorelaxation by wire myography. RESULTS: PVAT transplantation did not influence body weight, fat composition, lipid levels, or glucose/insulin sensitivity. However, as compared with controls, transplantation of PVAT onto the abdominal aorta increased thoracic aortic atherosclerosis. Furthermore, PVAT transplantation onto the abdominal aorta inhibited endothelium-dependent relaxation in the thoracic aorta. MCP-1 and TNF-α expression was elevated, while adiponectin expression was reduced, in the transplanted PVAT tissue, suggesting augmented inflammation as a potential mechanism for the remote vascular effects of transplanted PVAT. CONCLUSIONS: These data suggest that PVAT expansion and inflammation in obesity can remotely induce endothelial dysfunction and augment atherosclerosis. Identifying the underlying mechanisms may lead to novel approaches for risk assessment and treatment of obesity-related vascular disease.


Assuntos
Tecido Adiposo Branco/transplante , Aorta Abdominal/metabolismo , Aorta Abdominal/cirurgia , Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Comunicação Parácrina , Placa Aterosclerótica , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação
17.
Am J Physiol Heart Circ Physiol ; 313(6): H1168-H1179, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971841

RESUMO

Oxidative stress plays a fundamental role in abdominal aortic aneurysm (AAA) formation. Activated polymorphonuclear leukocytes (or neutrophils) are associated with AAA and express myeloperoxidase (MPO), which promotes inflammation, matrix degradation, and other pathological features of AAA, including enhanced oxidative stress through generation of reactive oxygen species. Both plasma and aortic MPO levels are elevated in patients with AAA, but the role of MPO in AAA pathogenesis has, heretofore, never been investigated. Here, we show that MPO gene deletion attenuates AAA formation in two animal models: ANG II infusion in apolipoprotein E-deficient mice and elastase perfusion in C57BL/6 mice. Oral administration of taurine [1% or 4% (wt/vol) in drinking water], an amino acid known to react rapidly with MPO-generated oxidants like hypochlorous acid, also prevented AAA formation in the ANG II and elastase models as well as the CaCl2 application model of AAA formation while reducing aortic peroxidase activity and aortic protein-bound dityrosine levels, an oxidative cross link formed by MPO. Both MPO gene deletion and taurine supplementation blunted aortic macrophage accumulation, elastin fragmentation, and matrix metalloproteinase activation, key features of AAA pathogenesis. Moreover, MPO gene deletion and taurine administration significantly attenuated the induction of serum amyloid A, which promotes ANG II-induced AAAs. These data implicate MPO in AAA pathogenesis and suggest that studies exploring whether taurine can serve as a potential therapeutic for the prevention or treatment of AAA in patients merit consideration.NEW & NOTEWORTHY Neutrophils are abundant in abdominal aortic aneurysm (AAA), and myeloperoxidase (MPO), prominently expressed in neutrophils, is associated with AAA in humans. This study demonstrates that MPO gene deletion or supplementation with the natural product taurine, which can scavenge MPO-generated oxidants, can prevent AAA formation, suggesting an attractive potential therapeutic strategy for AAA.


Assuntos
Antioxidantes/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/metabolismo , Taurina/farmacologia , Angiotensina II , Animais , Aorta Abdominal/enzimologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/genética , Cloreto de Cálcio , Modelos Animais de Doenças , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Neutrófilos/enzimologia , Elastase Pancreática , Peroxidase/deficiência , Peroxidase/genética , Espécies Reativas de Oxigênio/metabolismo , Proteína Amiloide A Sérica/metabolismo
18.
Stem Cells ; 34(1): 148-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26390028

RESUMO

Previously, we reported that a novel subpopulation of young mesenchymal stem cells (YMSCs) existed in old bone marrow, which possessed high antiaging properties as well as excellent efficacy for cardiac repair. MicroRNAs (miRNAs) have emerged as key regulators in post-transcriptional gene expression programs, and however, it is unknown whether miRNAs directly control stem cell senescence. Here we present the first evidence that miR-195 overexpressed in old MSCs (OMSCs) induces stem cell senescence deteriorating their regenerative ability by directly deactivating telomerase reverse transcriptase (Tert), and abrogation of miR-195 can reverse stem cell aging. MiRNAs profiling analysis in YMSCs and OMSCs by microarray showed that miR-140, miR-146a/b, and miR-195 were significantly upregulated in OMSCs, which led us to hypothesize that these are age-induced miRNAs involved in stem cell senescence. Of these miRNAs, we found miR-195 directly targeted 3'-untranslated region of Tert gene by computational target prediction analysis and luciferase assay, and knockdown of miR-195 significantly increased Tert expression in OMSCs. Strikingly, miR-195 inhibition significantly induced telomere relengthening in OMSCs along with reduced expression of senescence-associated ß-galactosidase. Moreover, silencing miR-195 in OMSCs by transfection of miR-195 inhibitor significantly restored antiaging factors expression including Tert and Sirt1 as well as phosphorylation of Akt and FOXO1. Notably, abrogation of miR-195 markedly restored proliferative abilities in OMSCs. Transplantation of OMSCs with knocked out miR-195 reduced infarction size and improved LV function. In conclusion, rejuvenation of aged stem cells by miR-195 inhibition would be a promising autologous therapeutic strategy for cardiac repair in the elderly patients.


Assuntos
Envelhecimento/genética , Senescência Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Telomerase/metabolismo , Animais , Sequência de Bases , Biomarcadores/metabolismo , Senescência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Dados de Sequência Molecular , Resultado do Tratamento , Regulação para Cima/genética , Cicatrização
20.
Stem Cells ; 32(2): 462-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123326

RESUMO

Stem cell-based therapy is a promising intervention for ischemic heart diseases. However, the functional integrity of stem cells is impaired in an ischemic environment. Here, we report a novel finding that heat shock significantly improves Sca-1(+) stem cell survival in an ischemic environment by the regulation of the triangle: heat shock factor 1 (HSF1), HSF1/miR-34a, and heat shock protein 70 (HSP70). Initially we prove that HSP70 is the key chaperone-mediating cytoprotective effect of heat shock in Sca-1(+) cells and then we establish miR-34a as a direct repressor of HSP70. We found that miR-34a was downregulated in heat shocked Sca-11 stem cells (HSSca-11 cells) [corrected]. Intriguingly, we demonstrate that the downregulation of miR-34a is attributed to HSF1-mediated epigenetic repression through histone H3 Lys27 trimethylation (H3K27me3) on miR-34a promoter. Moreover, we show that heat shock induces exosomal transfer of HSF1 from Sca-1(+) cells, which directs ischemic cardiomyocytes toward a prosurvival phenotype by epigenetic repression of miR-34a. In addition, our in vivo study demonstrates that transplantation of (HS) Sca-1(+) cells significantly reduces apoptosis, attenuates fibrosis, and improves global heart functions in ischemic myocardium. Hence, our study provides not only novel insights into the effects of heat shock on stem cell survival and paracrine behavior but also may have therapeutic values for stem cell therapy in ischemic heart diseases.


Assuntos
Antígenos Ly/genética , Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , MicroRNAs/genética , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Antígenos Ly/metabolismo , Apoptose/genética , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Exossomos/genética , Proteínas de Choque Térmico HSP70 , Fatores de Transcrição de Choque Térmico , Resposta ao Choque Térmico/genética , Humanos , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA