Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 84(20): 846-857, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34196262

RESUMO

The aim of this study was to examine the potential effects of long-term evolution (LTE) radiofrequency electromagnetic fields (RF-EMF) on cell proliferation using SH-SY5Y neuronal cells. The growth rate and proliferation of SH-SY5Y cells were significantly decreased upon exposure to 1760 MHz RF-EMF at 4 W/kg specific absorption rate (SAR) for 4 hr/day for 4 days. Cell cycle analysis indicated that the cell cycle was delayed in the G0/G1 phase after RF-EMF exposure. However, DNA damage or apoptosis was not involved in the reduced cellular proliferation following RF-EMF exposure because the expression levels of histone H2A.X at Ser139 (γH2AX) were not markedly altered and the apoptotic pathway was not activated. However, SH-SY5Y cells exposed to RF-EMF exhibited a significant elevation in Akt and mTOR phosphorylation levels. In addition, the total amount of p53 and phosphorylated-p53 was significantly increased. Data suggested that Akt/mTOR-mediated cellular senescence led to p53 activation via stimulation of the mTOR pathway in SH-SY5Y cells. The transcriptional activation of p53 led to a rise in expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27. Further, subsequent inhibition of CDK2 and CDK4 produced a fall in phosphorylated retinoblastoma (pRb at Ser807/811), which decreased cell proliferation. Taken together, these data suggest that exposure to RF-EMF might induce Akt/mTOR-mediated cellular senescence, which may delay the cell cycle without triggering DNA damage in SH-SY5Y neuroblastoma cells.


Assuntos
Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Neuroblastoma/fisiopatologia , Ondas de Rádio/efeitos adversos , Senescência Celular/genética , Humanos , Neuroblastoma/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
Int J Mol Sci ; 22(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069478

RESUMO

Exposure to radiofrequency electromagnetic fields (RF-EMFs) has increased rapidly in children, but information on the effects of RF-EMF exposure to the central nervous system in children is limited. In this study, pups and dams were exposed to whole-body RF-EMF at 4.0 W/kg specific absorption rate (SAR) for 5 h per day for 4 weeks (from postnatal day (P) 1 to P28). The effects of RF-EMF exposure on neurons were evaluated by using both pups' hippocampus and primary cultured hippocampal neurons. The total number of dendritic spines showed statistically significant decreases in the dentate gyrus (DG) but was not altered in the cornu ammonis (CA1) in hippocampal neurons. In particular, the number of mushroom-type dendritic spines showed statistically significant decreases in the CA1 and DG. The expression of glutamate receptors was decreased in mushroom-type dendritic spines in the CA1 and DG of hippocampal neurons following RF-EMF exposure. The expression of brain-derived neurotrophic factor (BDNF) in the CA1 and DG was significantly lower statistically in RF-EMF-exposed mice. The number of post-synaptic density protein 95 (PSD95) puncta gradually increased over time but was significantly decreased statistically at days in vitro (DIV) 5, 7, and 9 following RF-EMF exposure. Decreased BDNF expression was restricted to the soma and was not observed in neurites of hippocampal neurons following RF-EMF exposure. The length of neurite outgrowth and number of branches showed statistically significant decreases, but no changes in the soma size of hippocampal neurons were observed. Further, the memory index showed statistically significant decreases in RF-EMF-exposed mice, suggesting that decreased synaptic density following RF-EMF exposure at early developmental stages may affect memory function. Collectively, these data suggest that hindered neuronal outgrowth following RF-EMF exposure may decrease overall synaptic density during early neurite development of hippocampal neurons.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Neuritos/efeitos da radiação , Ondas de Rádio/efeitos adversos , Animais , Animais Recém-Nascidos/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuritos/metabolismo , Neurogênese , Crescimento Neuronal , Neurônios/metabolismo , Neurônios/efeitos da radiação , Sinapses/metabolismo , Sinapses/efeitos da radiação
3.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066270

RESUMO

With the rapid growth of the wireless communication industry, humans are extensively exposed to electromagnetic fields (EMF) comprised of radiofrequency (RF). The skin is considered the primary target of EMFs given its outermost location. Recent evidence suggests that extremely low frequency (ELF)-EMF can improve the efficacy of DNA repair in human cell-lines. However, the effects of EMF-RF on DNA damage remain unknown. Here, we investigated the impact of EMF-long term evolution (LTE, 1.762 GHz, 8 W/kg) irradiation on DNA double-strand break (DSB) using the murine melanoma cell line B16 and the human keratinocyte cell line HaCaT. EMF-LTE exposure alone did not affect cell viability or induce apoptosis or necrosis. In addition, DNA DSB damage, as determined by the neutral comet assay, was not induced by EMF-LTE irradiation. Of note, EMF-LTE exposure can attenuate the DNA DSB damage induced by physical and chemical DNA damaging agents (such as ionizing radiation (IR, 10 Gy) in HaCaT and B16 cells and bleomycin (BLM, 3 µM) in HaCaT cells and a human melanoma cell line MNT-1), suggesting that EMF-LTE promotes the repair of DNA DSB damage. The protective effect of EMF-LTE against DNA damage was further confirmed by attenuation of the DNA damage marker γ-H2AX after exposure to EMF-LTE in HaCaT and B16 cells. Most importantly, irradiation of EMF-LTE (1.76 GHz, 6 W/kg, 8 h/day) on mice in vivo for 4 weeks reduced the γ-H2AX level in the skin tissue, further supporting the protective effects of EMF-LTE against DNA DSB damage. Furthermore, p53, the master tumor-suppressor gene, was commonly upregulated by EMF-LTE irradiation in B16 and HaCaT cells. This finding suggests that p53 plays a role in the protective effect of EMF-LTE against DNA DSBs. Collectively, these results demonstrated that EMF-LTE might have a protective effect against DNA DSB damage in the skin, although further studies are necessary to understand its impact on human health.


Assuntos
Quebras de DNA de Cadeia Dupla , Campos Eletromagnéticos , Queratinócitos/efeitos da radiação , Melanoma/prevenção & controle , Substâncias Protetoras , Radiação Ionizante , Ondas de Rádio , Animais , Apoptose , Sobrevivência Celular , Reparo do DNA , Humanos , Técnicas In Vitro , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Melanoma/etiologia , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Korean J Physiol Pharmacol ; 25(5): 439-448, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448461

RESUMO

DA-9601 is an extract obtained from Artemisia asiatica, which has been reported to have anti-inflammatory effects on gastrointestinal lesions; however, its possible anti-inflammatory effects on the small intestine have not been studied yet. Therefore, in this study, we investigated the protective effects of DA-9601 against the ACF-induced small intestinal inflammation. Inflammation of the small intestine was confirmed by histological studies and the changes in the CD4+ T cell fraction induced by the inflammation-related cytokines, and the inflammatory reactions were analyzed. Multifocal discrete small necrotic ulcers with intervening normal mucosa were frequently observed after treatment with ACF. The expression of IL-6 , IL-17, and TNF-α genes was increased in the ACF group; however, it was found to have been significantly decreased in the DA-9601 treated group. In addition, DA-9601 significantly decreased the levels of proinflammatory mediators such as IL-1ß, GMCSF, IFN-γ, and TNF-α; the anti-inflammatory cytokine IL-10, on the other hand, was observed to have increased. It is known that inflammatory mediators related to T cell imbalance and dysfunction continuously activate the inflammatory response, causing chronic tissue damage. The fractions of IFN-γ+ Th1 cells, IL-4+ Th2 cells, IL-9+ Th9 cells, IL-17+ Th17 cells, and Foxp3+ Treg cells were significantly decreased upon DA-9601 treatment. These data suggest that the inflammatory response induced by ACF is reduced by DA-9601 via lowering of the expression of genes encoding the inflammatory cytokines and the concentration of inflammatory mediators. Furthermore, DA-9601 inhibited the acute inflammatory response mediated by T cells, resulting in an improvement in ACF-induced enteritis.

5.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375304

RESUMO

With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE- or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.


Assuntos
Campos Eletromagnéticos , Queratinócitos/efeitos da radiação , Melanócitos/efeitos da radiação , Ondas de Rádio , Pigmentação da Pele/efeitos da radiação , Animais , Proliferação de Células , Humanos , Técnicas In Vitro , Queratinócitos/citologia , Queratinócitos/metabolismo , Melaninas/metabolismo , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Gen Physiol Biophys ; 38(5): 379-388, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31411574

RESUMO

With the rapidly increasing use of mobile phones and their close-contact usage to the brain, there are some concerns about the possible neuronal effects induced by exposure to excessive electromagnetic radiation. Exposure to a radiofrequency electromagnetic field (RF-EMF) of 835 MHz (4.0 W/kg specific absorption rate (SAR) 5 h/day for 12 weeks) may affect hypothalamic presynaptic neurons in C57BL/6 mice. The number and size of the synaptic vesicles (SVs) in the hypothalamic presynaptic terminals were significantly decreased after RF-EMF exposure. Further, the density (SVs numbers/µm) of docking and fusing SVs in the active zones of the presynaptic terminal membrane was significantly decreased in hypothalamic neurons. The expression levels of synapsin I/II and synaptotagmin 1, two regulators of SV trafficking in neurons, were also significantly decreased in the hypothalamus. In parallel, the expression of calcium channel was significantly decreased. These changes in SVs in the active zones may directly decrease the release of neurotransmitters in hypothalamic presynaptic terminals. Therefore, we further studied the possible changes in hypothalamic function by testing the core body temperature and body weight and performed the buried pellet test. The trafficking of SVs was changed by RF-EMF; however, we could not find any significant phenotypical changes in our experimental condition.


Assuntos
Hipotálamo/metabolismo , Hipotálamo/efeitos da radiação , Ondas de Rádio , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos da radiação , Animais , Transporte Biológico/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Toxicol Ind Health ; 34(1): 23-35, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29166827

RESUMO

The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.


Assuntos
Autofagia/efeitos da radiação , Tronco Encefálico/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Hipocampo/efeitos da radiação , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/análise , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Perfilação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Korean J Physiol Pharmacol ; 22(3): 277-289, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29719450

RESUMO

The exponential increase in the use of mobile communication has triggered public concerns about the potential adverse effects of radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones on the central nervous system (CNS). In this study, we explored the relationship between calcium channels and apoptosis or autophagy in the hippocampus of C57BL/6 mice after RF-EMF exposure with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Firstly, the expression level of voltage-gated calcium channels (VGCCs), a key regulator of the entry of calcium ions into the cell, was confirmed by immunoblots. We investigated and confirmed that pan-calcium channel expression in hippocampal neurons were significantly decreased after exposure to RF-EMF. With the observed accumulation of autolysosomes in hippocampal neurons via TEM, the expressions of autophagy-related genes and proteins (e.g., LC3B-II) had significantly increased. However, down-regulation of the apoptotic pathway may contribute to the decrease in calcium channel expression, and thus lower levels of calcium in hippocampal neurons. These results suggested that exposure of RF-EMF could alter intracellular calcium homeostasis by decreasing calcium channel expression in the hippocampus; presumably by activating the autophagy pathway, while inhibiting apoptotic regulation as an adaptation process for 835 MHz RF-EMF exposure.

9.
Korean J Physiol Pharmacol ; 21(2): 179-188, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280411

RESUMO

With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether short-term exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

10.
Pharmazie ; 70(1): 55-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25975099

RESUMO

Methyl gallate (MG) was isolated from the bark of Acer barbinerve, which has traditionally been used in Oriental medicine. In the present study, we examined the effects of MG on melanin synthesis in Mel-Ab melanocyte cells. MG decreased melanin pigmentation in a concentration-dependent manner, but did not directly inhibit tyrosinase activity. Further analysis showed that MG had no effect on extracellular signal-regulated kinase (ERK) activation, but induced phosphorylation of glycogen synthase kinase (GSK)3ß, which is known to increase ß-catenin accumulation. Accordingly, the ß-catenin level was increased by MG. However, a specific GSK3ß inhibitor did not rescue the MG-induced inhibition of melanogenesis. Additionally, MG decreased the protein expression of microphthalmia-associated transcription factor (MITF) and tyrosinase, which regulate melanin synthesis. Based on these results, we conclude that MG inhibits melanogenesis by decreasing the expression of MITF and tyrosinase.


Assuntos
Acer/química , Ácido Gálico/análogos & derivados , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Gálico/farmacologia , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Casca de Planta/química , Transdução de Sinais/efeitos dos fármacos
11.
ScientificWorldJournal ; 2014: 231293, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24592150

RESUMO

Platycodon grandiflorum has long been used as a traditional oriental medicine for respiratory disorder. Platycodin D (PD) is known as the main component isolated from the root of PG. A simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the quantitation of PD in rat plasma. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization and multiple reaction monitoring in positive ion mode. The total chromatographic run time was 4.0 min, and the calibration curves of PD were linear over the concentration range of 50-10,000 ng/mL in rat plasma. The coefficient of variation and relative error at five QC levels were 1.0 to 8.8% and 0.7 to 8.7%, respectively. After a single oral administration of 500 mg/kg and a single intravenous administration of 25 mg/kg of 3% PD extract (a PG extract including 3% of PD), platycodin D and platycodin D3 were detected and pharmacokinetic parameters were estimated. The oral bioavailability of platycodin D and platycodin D3 was 0.29% and 1.35% in rats at 500 mg/kg of 3% PD extract of PG, respectively. The present method can be applied to pharmacokinetic analysis of platycodins and platycosides of the PG.


Assuntos
Saponinas/sangue , Triterpenos/sangue , Animais , Disponibilidade Biológica , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Ratos , Ratos Sprague-Dawley , Saponinas/farmacocinética , Triterpenos/farmacocinética
12.
Korean J Physiol Pharmacol ; 18(2): 129-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24757374

RESUMO

It has been suggested that transition metal ions such as iron can produce an oxidative injuries to nigrostriatal dopaminergic neurons, like Parkinson's disease (PD) and subsequent compensative increase of tetrahydrobiopterin (BH4) during the disease progression induces the aggravation of dopaminergic neurodegeneration in striatum. It had been established that the direct administration of BH4 into neuron would induce the neuronal toxicity in vitro. To elucidate a role of BH4 in pathogenesis in the PD in vivo, we assessed the changes of dopamine (DA) and BH4 at striatum in unilateral intranigral iron infused PD rat model. The ipsistriatal DA and BH4 levels were significantly increased at 0.5 to 1 d and were continually depleting during 2 to 7 d after intranigral iron infusion. The turnover rate of BH4 was higher than that of DA in early phase. However, the expression level of GTP-cyclohydrolase I mRNA in striatum was steadily increased after iron administration. These results suggest that the accumulation of intranigral iron leads to generation of oxidative stress which damage to dopaminergic neurons and causes increased release of BH4 in the dopaminergic neuron. The degenerating dopaminergic neurons decrease the synthesis and release of both BH4 and DA in vivo that are relevance to the progression of PD. Based on these data, we propose that the increase of BH4 can deteriorate the disease progression in early phase of PD, and the inhibition of BH4 increase could be a strategy for PD treatment.

13.
Toxics ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38787119

RESUMO

The chemical 4-amino-3-nitrophenol (4A3NP) is classified as an amino nitrophenol and is primarily utilized as an ingredient in hair dye colorants. In Korea and Europe, it is exclusively used in non-oxidative or oxidative hair dye formulations, with maximum allowable concentrations of 1% and 1.5%, respectively. Despite this widespread use, risk assessment of 4A3NP has not been completed due to the lack of proper dermal absorption data. Therefore, in this study, both the analytical method validation and in vitro dermal absorption study of 4A3NP were conducted following the guidelines provided by the Korea Ministry of Food and Drug Safety (MFDS). Before proceeding with the dermal absorption study, analytical methods were developed for the quantitation of 4A3NP through multiple reaction monitoring (MRM) via liquid chromatography-mass spectrometry (LC-MS) in various matrices, including swab wash (WASH), stratum corneum (SC), skin (SKIN, comprising the dermis and epidermis), and receptor fluid (RF). These developed methods demonstrated excellent linearity (R2 = 0.9962-0.9993), accuracy (93.5-111.73%), and precision (1.7-14.46%) in accordance with the validation guidelines.The dermal absorption of 4A3NP was determined using Franz diffusion cells with mini-pig skin as the barrier. Under both non-oxidative and oxidative (6% hydrogen peroxide (H2O2): water, 1:1) hair dye conditions, 1% and 1.5% concentrations of 4A3NP were applied to the skin at a rate of 10 µL/cm2, respectively. The total dermal absorption rates of 4A3NP under non-oxidative (1%) and oxidative (1.5%) conditions were determined to be 5.62 ± 2.19% (5.62 ± 2.19 µg/cm2) and 2.83 ± 1.48% (4.24 ± 2.21 µg/cm2), respectively.

14.
Korean J Physiol Pharmacol ; 17(1): 89-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23440908

RESUMO

Developing an animal model for a specific disease is very important in the understanding of the underlying mechanism of the disease and allows testing of newly developed new drugs before human application. However, which of the plethora of experimental animal species to use in model development can be perplexing. Administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a very well known method to induce the symptoms of Parkinson's disease in mice. But, there is very limited information about the different sensitivities to MPTP among mouse strains. Here, we tested three different mouse strains (C57BL/6, Balb-C, and ICR) as a Parkinsonian model by repeated MPTP injections. In addition to behavioral analysis, endogenous levels of dopamine and tetrahydrobiopterin in mice brain regions, such as striatum, substantia nigra, and hippocampus were directly quantified by liquid chromatography-tandem mass spectrometry. Repeated administrations of MPTP significantly affected the moving distances and rearing frequencies in all three mouse strains. The endogenous dopamine concentrations and expression levels of tyrosine hydroxylase were significantly decreased after the repeated injections, but tetrahydrobiopterin did not change in analyzed brain regions. However, susceptibilities of the mice to MPTP were differed based on the degree of behavioral change, dopamine concentration in brain regions, and expression levels of tyrosine hydroxylase, with C57BL/6 and Balb-C mice being more sensitive to the dopaminergic neuronal toxicity of MPTP than ICR mice.

15.
Korean J Physiol Pharmacol ; 17(5): 469-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24227950

RESUMO

This study investigated effect of extract containing quercetin-3-O-ß-D-glucuronopyranoside from Rumex Aquaticus Herba (ECQ) against chronic gastritis in rats. To produce chronic gastritis, the animals received a daily intra-gastric administration of 0.1 ml of 0.15% iodoacetamide (IA) solution for 7 days. Daily exposure of the gastric mucosa to IA induced both gastric lesions and significant reductions of body weight and food and water intake. These reductions recovered with treatment with ECQ for 7 days. ECQ significantly inhibited the elevation of the malondialdehyde levels and myeloperoxidase activity, which were used as indices of lipid peroxidation and neutrophil infiltration. ECQ recovered the level of glutathione, activity of superoxide dismutase (SOD), and expression of SOD-2. The increased levels of total NO concentration and iNOS expression in the IA-induced chronic gastritis were significantly reduced by treatment with ECQ. These results suggest that the ECQ has a therapeutic effect on chronic gastritis in rats by inhibitory actions on neutrophil infiltration, lipid peroxidation and various steps of reactive oxygen species (ROS) generation.

16.
Biomol Ther (Seoul) ; 31(3): 340-349, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642928

RESUMO

Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

17.
Toxicol In Vitro ; 93: 105690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660996

RESUMO

As global awareness of animal welfare spreads, the development of alternative animal test models is increasingly necessary. The purpose of this study was to develop a practical machine-learning model for skin sensitization using three physicochemical properties of the chemicals: surface tension, melting point, and molecular weight. In this study, a total of 482 chemicals with local lymph node assay results were collected, and 297 datasets with 6 physico-chemical properties were used to develop Random Forest (RF) model for skin sensitization. The developed model was validated with 45 fragrance allergens announced by European Commission. The validation results showed that RF achieved better or similar classification performance with f1-scores of 54% for penal, 82% for ternary, and 96% for binary compared with Support Vector Machine (SVM) (penal, 41%; ternary, 81%; binary, 93%), QSARs (ChemTunes, 72% for ternary; OECD Toolbox, 89% for binary), and a linear model (Kim et al., 2020) (41% for penal), and we recommend the ternary classification based on Global Harmonized System providing more detailed and precise information. In the further study, the proposed model results were experimentally validated with the Direct Peptide Reactivity Assay (DPRA, OECD TG 442C approved model), and the results showed a similar tendency. We anticipate that this study will help to easily and quickly screen chemical sensitization hazards.


Assuntos
Dermatite Alérgica de Contato , Pele , Animais , Alérgenos/toxicidade , Ensaio Local de Linfonodo , Peptídeos , Aprendizado de Máquina , Alternativas aos Testes com Animais/métodos , Dermatite Alérgica de Contato/etiologia
18.
Biochem Biophys Res Commun ; 419(4): 632-7, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22382017

RESUMO

A simple and rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of tetrahydrobiopterin (BH4) and dopamine in rat brain using epsilon-acetamidocaproic acid (AACA) as an internal standard. Proteins in the samples were precipitated with acetonitrile and then the supernatants were separated by a Sepax Polar-Imidazole (2.1 × 100 mm, i.d., 3 µm) column using a mixture of 10mM ammonium formate in acetonitrile/water (75:25, v/v) as the mobile phase at a flow rate of 300 µl/min. Quantification was performed on a triple quadrupole mass spectrometer employing electrospray ionization with the operating conditions as multiple reaction monitoring (MRM) and positive ion mode from m/z 242.1 → 166.0 for BH4, m/z 154.1 → 90.0 for dopamine and m/z 174.1 → 114.0 for AACA (IS). The total chromatographic run time was for 5.5 min. The method was validated for the analysis of samples: the limit of detection was 10 ng/g. The calibration curve was linear between 10-2000 ng/g for BH4 (r(2)=0.995) and 10-5000 ng/g for dopamine (r(2)=0.997) in the rat brain. Thus, good correlated LC-ESI/MS/MS results were obtained and found to be a powerful tool for the quantitative analysis of BH4 and dopamine in the rat brain.


Assuntos
Biopterinas/análogos & derivados , Química Encefálica , Cromatografia Líquida/métodos , Dopamina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Biopterinas/análise , Ratos
19.
Am J Respir Cell Mol Biol ; 44(6): 888-97, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20705939

RESUMO

Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.


Assuntos
Citoesqueleto/metabolismo , Músculo Liso/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/química , Animais , Broncoconstrição , Carbacol/farmacologia , Bovinos , Reagentes de Ligações Cruzadas/química , Oscilometria/métodos , Fosforilação , Doença Pulmonar Obstrutiva Crônica/terapia , Estresse Mecânico , Talina/metabolismo , Traqueia/metabolismo , Vinculina/metabolismo
20.
Sci Rep ; 11(1): 7680, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828192

RESUMO

As the skin is the largest body organ and critically serves as a barrier, it is frequently exposed and could be physiologically affected by radiofrequency electromagnetic field (RF-EMF) exposure. In this study, we found that 1760 MHz RF-EMF (4.0 W/kg specific absorption rate for 2 h/day during 4 days) exposure could induce intracellular reactive oxygen species (ROS) production in HaCaT human keratinocytes using 2',7'-dichlorofluorescin diacetate fluorescent probe analysis. However, cell growth and viability were unaffected by RF-EMF exposure. Since oxidative stress in the skin greatly influences the skin-aging process, we analyzed the skin senescence-related factors activated by ROS generation. Matrix metalloproteinases 1, 3, and 7 (MMP1, MMP3, and MMP7), the main skin wrinkle-related proteins, were significantly increased in HaCaT cells after RF-EMF exposure. Additionally, the gelatinolytic activities of secreted MMP2 and MMP9 were also increased by RF-EMF exposure. FoxO3a (Ser318/321) and ERK1/2 (Thr 202/Tyr 204) phosphorylation levels were significantly increased by RF-EMF exposure. However, Bcl2 and Bax expression levels were not significantly changed, indicating that the apoptotic pathway was not activated in keratinocytes following RF-EMF exposure. In summary, our findings show that exposure to 1760 MHz RF-EMF induces ROS generation, leading to MMP activation and FoxO3a and ERK1/2 phosphorylation. These data suggest that RF-EMF exposure induces cellular senescence of skin cells through ROS induction in HaCaT human keratinocytes.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Proteína Forkhead Box O3/metabolismo , Queratinócitos/efeitos da radiação , Metaloproteinases da Matriz/metabolismo , Envelhecimento da Pele/efeitos da radiação , Ativação Enzimática/efeitos da radiação , Células HaCaT , Humanos , Queratinócitos/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Fosforilação/efeitos da radiação , Ondas de Rádio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA