Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 20750-20757, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39031077

RESUMO

Despite the high potential of one-dimensional (1D) donor-acceptor (D-A) coaxial nanostructures in bulk-heterojunction solar cell applications, the preparation of such 1D nanostructures using π-conjugated polymers has remained elusive. Herein, we demonstrate the first example of D-A semiconducting nanoribbons based on fully conjugated block copolymers (BCPs) prepared in a highly efficient procedure with controllable width and length via living crystallization-driven self-assembly (CDSA). Initially, Suzuki-Miyaura catalyst-transfer polymerization was employed to successfully synthesize BCPs containing two types of acceptor shells as the first block, followed by a donor poly(3-propylthiophene) core as the second block. The limited solubility and high crystallinity of the core induced a polymerization-induced crystallization-driven self-assembly (PI-CDSA) of the BCPs into nanoribbons during polymerization, providing a tunable width (7.6-39.6 nm) depending on the length of the polymer backbone. Surprisingly, purifying as-synthesized BCPs via simple precipitation directly yielded short and uniform seed structures, greatly shortening the overall protocol by eliminating the time-consuming process of initial aging and breaking down to the seed required for the conventional CDSA. With this new highly efficient method, we achieved length control over a broad range from 169 to 2210 nm, with high precision (Lw/Ln < 1.20). Furthermore, combining self-seeding and seeded growth from two different D-A-type BCPs enabled continuous living epitaxial growth from each end of the nanoribbons, resulting in B-A-B triblock D-A semiconducting comicelles with controlled length.

2.
Angew Chem Int Ed Engl ; 61(31): e202205828, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650688

RESUMO

Herein, we demonstrate that living Suzuki-Miyaura catalyst-transfer polymerization (SCTP) using a RuPhos Pd G3 precatalyst is a versatile method for the precision synthesis of various donor-acceptor alternating conjugated polymers (DA ACPs). First, the living SCTP of biaryl monomers with combinations of both medium to strong A and D were optimized to produce DA ACPs with controlled number average molecular weight (Mn ), narrow dispersity (Ð, 1.05-1.29), and high yield (>87 %). Moreover, its expansion to controlled polymerization (Mn =9.2-40.0 kg mol-1 ) of an A1 -D-A2 -D quateraryl monomer containing diketopyrrolopyrrole (DPP; strong A) was successful. The living SCTP also enabled the efficient one-pot synthesis of various diblock and triblock copolymers. Lastly, the DA ACPs showed tunable optical band gap (Eg opt , from 1.29 to 1.77 eV) and highest occupied molecular orbital (HOMO) level (from -5.57 to -4.75 eV), while their block copolymers exhibited broad absorption ranges and promising visible light-harvesting properties.

3.
J Am Chem Soc ; 143(29): 11180-11190, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264077

RESUMO

Catalyst-transfer polymerization has revolutionized the field of polymer synthesis due to its living character, but for a given catalyst system, the polymer scope is rather narrow. Herein we report a highly efficient Suzuki-Miyaura catalyst-transfer polymerization (SCTP) that covers a wide range of monomers from electron-rich (donor, D) to electron-deficient (acceptor, A) (hetero)arenes by rationally designing boronate monomers and using commercially available Buchwald RuPhos and SPhos Pd G3 precatalysts. Initially, we optimized the controlled polymerization of 3,4-propylenedioxythiophene (ProDOT), benzotriazole (BTz), quinoxaline (QX), and 2,3-diphenylquinoxaline (QXPh) by introducing new boronates, such as 4,4,8,8-tetramethyl-1,3,6,2-dioxazaborocane and its N-benzylated derivative, to modulate the reactivity and stability of the monomers. As a result, PProDOT, PBTz, PQX, and PQXPh were prepared with controlled molecular weight and narrow dispersity (D < 1.29) in excellent yield (>85%). A detailed investigation of the polymer structures using 1H NMR and MALDI-TOF spectrometry supported the chain-growth mechanism and the high initiation efficiency of the SCTP method. In addition, the use of RuPhos-Pd showing excellent catalyst-transfer ability on both D/A monomers led to unprecedented controlled D-A statistical copolymerization, thereby modulating the HOMO energy level (from -5.11 to -4.80 eV) and band gap energy (from 1.68 to 1.91 eV) of the resulting copolymers. Moreover, to demonstrate the living nature of SCTP, various combinations of D-A and A-A block copolymers (PBTz-b-PProDOT, PQX-b-PProDOT, and PQX-b-PBTz) were successfully prepared by the sequential addition method. Finally, simple but powerful one-shot D-A block copolymerization was achieved by maximizing the rate difference between a fast-propagating pinacol boronate donor and a slow-propagating acceptor to afford well-defined poly(3-hexylthiophene)-b-poly(benzotriazole).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA