Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 23, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38287397

RESUMO

BACKGROUND: Glioblastoma (GBM) is more difficult to treat than other intractable adult tumors. The main reason that GBM is so difficult to treat is that it is highly infiltrative. Migrasomes are newly discovered membrane structures observed in migrating cells. Thus, they can be generated from GBM cells that have the ability to migrate along the brain parenchyma. However, the function of migrasomes has not yet been elucidated in GBM cells. RESULTS: Here, we describe the composition and function of migrasomes generated along with GBM cell migration. Proteomic analysis revealed that LC3B-positive autophagosomes were abundant in the migrasomes of GBM cells. An increased number of migrasomes was observed following treatment with chloroquine (CQ) or inhibition of the expression of STX17 and SNAP29, which are involved in autophagosome/lysosome fusion. Furthermore, depletion of ITGA5 or TSPAN4 did not relieve endoplasmic reticulum (ER) stress in cells, resulting in cell death. CONCLUSIONS: Taken together, our study suggests that increasing the number of autophagosomes, through inhibition of autophagosome/lysosome fusion, generates migrasomes that have the capacity to alleviate cellular stress.


Assuntos
Autofagossomos , Glioblastoma , Humanos , Autofagossomos/metabolismo , Glioblastoma/metabolismo , Autofagia , Proteômica , Lisossomos/metabolismo , Estresse do Retículo Endoplasmático
2.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834227

RESUMO

Glioblastoma (GBM) is the most lethal brain cancer, causing inevitable deaths of patients owing to frequent relapses of cancer stem cells (CSCs). The significance of the NOTCH signaling pathway in CSCs has been well recognized; however, there is no NOTCH-selective treatment applicable to patients with GBM. We recently reported that Jagged1 (JAG1), a NOTCH ligand, drives a NOTCH receptor-independent signaling pathway via JAG1 intracellular domain (JICD1) as a crucial signal that renders CSC properties. Therefore, mechanisms regulating the JICD1 signaling pathway should be elucidated to further develop a selective therapeutic regimen. Here, we identified annexin A2 (ANXA2) as an essential modulator to stabilize intrinsically disordered JICD1. The binding of ANXA2 to JICD1 prevents the proteasomal degradation of JICD1 by heat shock protein-70/90 and carboxy-terminus of Hsc70 interacting protein E3 ligase. Furthermore, JICD1-driven propagation and tumor aggressiveness were inhibited by ANXA2 knockdown. Taken together, our findings show that ANXA2 maintains the function of the NOTCH receptor-independent JICD1 signaling pathway by stabilizing JICD1, and the targeted suppression of JICD1-driven CSC properties can be achieved by blocking its interaction with ANXA2.


Assuntos
Anexina A2 , Glioblastoma , Humanos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Recidiva Local de Neoplasia , Receptores Notch/metabolismo
3.
FASEB J ; 35(10): e21906, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490940

RESUMO

Glioblastoma (GBM) is a refractory disease that has a highly infiltrative characteristic. Over the past decade, GBM perivascular niche (PVN) has been described as a route of dissemination. Here, we investigated that trailed membrane structures, namely retraction fibers (RFs), are formed by perivascular extracellular matrix (ECM) proteins. By using the anatomical GBM database, we validated that the ECM-related genes were highly expressed in the cells within the PVN where fibronectin (FN) induced RF formation. By disrupting candidates of FN-binding integrins, integrin α5ß1 was identified as the main regulator of RF formation. De novo RFs were produced at the trailing edge, and focal adhesions were actively localized in RFs, indicating that adhesive force makes RFs remain at the bottom surface. Furthermore, we observed that GBM cells more frequently migrated along the residual RFs formed by preceding cells in microfluidic channels in comparison to those in the channels without RFs, suggesting that the infiltrative characteristics GBM could be attributed to RFs formed by the preceding cells in concert with chemoattractant cues. Altogether, we demonstrated that shedding membrane structures of GBM cells are maintained by FN-integrin α5ß1 interaction and promoted their motility .


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular , Fibronectinas/metabolismo , Glioblastoma/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Vitronectina/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Brain ; 144(2): 636-654, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33479772

RESUMO

As the clinical failure of glioblastoma treatment is attributed by multiple components, including myelin-associated infiltration, assessment of the molecular mechanisms underlying such process and identification of the infiltrating cells have been the primary objectives in glioblastoma research. Here, we adopted radiogenomic analysis to screen for functionally relevant genes that orchestrate the process of glioma cell infiltration through myelin and promote glioblastoma aggressiveness. The receptor of the Nogo ligand (NgR1) was selected as the top candidate through Differentially Expressed Genes (DEG) and Gene Ontology (GO) enrichment analysis. Gain and loss of function studies on NgR1 elucidated its underlying molecular importance in suppressing myelin-associated infiltration in vitro and in vivo. The migratory ability of glioblastoma cells on myelin is reversibly modulated by NgR1 during differentiation and dedifferentiation process through deubiquitinating activity of USP1, which inhibits the degradation of ID1 to downregulate NgR1 expression. Furthermore, pimozide, a well-known antipsychotic drug, upregulates NgR1 by post-translational targeting of USP1, which sensitizes glioma stem cells to myelin inhibition and suppresses myelin-associated infiltration in vivo. In primary human glioblastoma, downregulation of NgR1 expression is associated with highly infiltrative characteristics and poor survival. Together, our findings reveal that loss of NgR1 drives myelin-associated infiltration of glioblastoma and suggest that novel therapeutic strategies aimed at reactivating expression of NgR1 will improve the clinical outcome of glioblastoma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Bainha de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos Endogâmicos BALB C , Bainha de Mielina/patologia , Proteases Específicas de Ubiquitina/metabolismo
5.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807555

RESUMO

Although the human brain would be an ideal model for studying human neuropathology, it is difficult to perform in vitro culture of human brain cells from genetically engineered healthy or diseased brain tissue. Therefore, a suitable model for studying the molecular mechanisms responsible for neurological diseases that can appropriately mimic the human brain is needed. Somatic cell nuclear transfer (SCNT) was performed using an established porcine Yucatan EGFP cell line and whole seeding was performed using SCNT blastocysts. Two Yucatan EGFP porcine embryonic stem-like cell (pESLC) lines were established. These pESLC lines were then used to establish an in vitro neuro-organoids. Aggregates were cultured in vitro until 61 or 102 days after neural induction, neural patterning, and neural expansion. The neuro-organoids were sampled at each step and the expression of the dopaminergic neuronal marker (TH) and mature neuronal marker (MAP2) was confirmed by reverse transcription-PCR. Expression of the neural stem cell marker (PAX6), neural precursor markers (S100 and SOX2), and early neural markers (MAP2 and Nestin) were confirmed by immunofluorescence staining. In conclusion, we successfully established neuro-organoids derived from pESLCs in vitro. This protocol can be used as a tool to develop in vitro models for drug development, patient-specific chemotherapy, and human central nervous system disease studies.


Assuntos
Células-Tronco Embrionárias/citologia , Organoides/citologia , Animais , Biomarcadores/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Técnicas de Transferência Nuclear , Organoides/metabolismo , Suínos
6.
BMC Biotechnol ; 19(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606176

RESUMO

BACKGROUND: Genetic engineering technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system provides a powerful tool for developing disease models and determining gene functions. Recent interests in canine cancer models have highlighted the necessity of developing genetic engineering tools for dogs. In this study, we attempted to generate optimized CRISPR/Cas9 system to target canine tumor protein 53 (TP53), one of the most crucial tumor suppressor genes, to establish TP53 knockout canine cells for canine cancer research. RESULTS: We constructed CRISPR/Cas9 vectors using each of three TP53 gene-targeting guide RNAs (gRNAs) with minimal off-target potential. After transfection, we obtained several clones of TP53 knockout cells containing "indel" mutations in the targeted locus which had infinite cellular life span, resistance to genotoxicity, and unstable genomic status in contrast to normal cells. Of the established TP53 knockout cells, TP53KO#30 cells targeted by TP53 gRNA #30 showed non-cancerous phenotypes without oncogenic activation both in vitro and in vivo. More importantly, no off-target alteration was detected in TP53KO#30 cells. We also tested the developmental capacity of TP53 knockout cells after application of the somatic cell nuclear transfer technique. CONCLUSIONS: Our results indicated that TP53 in canine cells was effectively and specifically targeted by our CRISPR/Cas9 system. Thus, we suggest our CRISPR/Cas9-derived canine TP53 knockout cells as a useful platform to reveal novel oncogenic functions and effects of developing anti-cancer therapeutics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Genes p53 , Neoplasias/genética , Neoplasias/veterinária , Animais , Animais Geneticamente Modificados , Cães , Fibroblastos/fisiologia , Masculino , Neoplasias/prevenção & controle
8.
Biochem Biophys Res Commun ; 496(4): 1013-1018, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-28216164

RESUMO

Glioma stem-like cells (GSCs) contribute to tumor initiation, progression, and therapeutic resistance, but their cellular origin remains largely unknown. Here, using a stem/progenitor cell-fate tracking reporter system in which eGFP is expressed by promoter of OCT4 that is activated in stem/progenitor cells, we demonstrate that eGFP-negative glioma cells (GCs) became eGFP-positive-GCs in both in vitro cultures and in vivo xenografts. These eGFP-positive-GCs exhibited GSC features and primarily localized to the perivascular region in tumor xenografts, similar to the existence of OCT4-expressing GCs in the perivascular region of human glioblastoma specimens. Angiocrine factors, including nitric oxide (NO), converted eGFP-negative-GCs into eGFP-positive-GCs. Mechanistically, NO signaling conferred GSC features to GCs by increasing OCT4 and NOTCH signaling via ID4. NO signaling blockade and a suicide gene induction prevented tumorigenicity with a decrease in eGFP-positive-GCs in the perivascular region. Taken together, our results reveal the molecular mechanism underlying GSCs generation by cancer cell dedifferentiation.


Assuntos
Proteínas Angiogênicas/metabolismo , Desdiferenciação Celular , Glioma/metabolismo , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica
9.
PLoS Biol ; 13(5): e1002152, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25992628

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications.


Assuntos
Receptores ErbB/metabolismo , Proteínas do Olho/metabolismo , Glioma/etiologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Animais , Comunicação Autócrina , Progressão da Doença , Feminino , Glioma/metabolismo , Glioma/mortalidade , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo
10.
BMC Vet Res ; 14(1): 331, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404643

RESUMO

BACKGROUND: The porcine brain is gyrencephalic with similar gray and white matter composition and size more comparable to the human rather than the rodent brain; however, there is lack of information about neural progenitor cells derived from this model. RESULTS: Here, we isolated GFAP-positive porcine neural stem cells (NSCs) from the brain explant of a transgenic piglet, with expression of CreERT2 under the control of the GFAP promoter (pGFAP-CreERT2). The isolated pGFAP-CreERT2 NSCs showed self-renewal and expression of representative NSC markers such as Nestin and Sox2. Pharmacological inhibition studies revealed that Notch1 signaling is necessary to maintain NSC identity, whereas serum treatment induced cell differentiation into reactive astrocytes and neurons. CONCLUSIONS: Collectively, these results indicate that GFAP promoter-driven porcine CreERT2 NSCs would be a useful tool to study neurogenesis of the porcine adult central nervous system and furthers our understanding of its potential clinical application in the future. ᅟ.


Assuntos
Proteína Glial Fibrilar Ácida/metabolismo , Células-Tronco Neurais/fisiologia , Suínos/anatomia & histologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Astrócitos/metabolismo , Diferenciação Celular , Suínos/genética
11.
Biochem Biophys Res Commun ; 486(2): 564-570, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28327358

RESUMO

Most cancer-related signaling pathways sustain their active or inactive status via genetic mutations or various regulatory mechanisms. Previously, we demonstrated that platelet-derived growth factor (PDGF) activates Notch signaling through nitric oxide (NO)-signaling-driven activation of inhibitor of differentiation 4 (ID4) in glioblastoma (GBM) stem cells (GSCs) and endothelial cells in the vascular niche of GBM, leading to maintenance of GSC traits and GBM progression. Here, we determined that the PDGF-NO-ID4-signaling axis is constantly activated through a positive regulatory circuit. ID4 expression significantly increased PDGF subunit B expression in both in vitro cultures and in vivo tumor xenografts and regulated NO synthase 2 (NOS2) expression and NO production by activating PDGF signaling, as well as that of its receptor (PDGFR). Additionally, ectopic expression of PDGFRα, NOS2, or ID4 activated the PDGF-NO-ID4-signaling circuit and enhanced the self-renewal of GBM cell lines. These results suggested that the positive regulatory circuit associated with PDGF-NO-ID4 signaling plays a pivotal role in regulating the self-renewal and tumor-initiating capacity of GSCs and might provide a promising therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas Inibidoras de Diferenciação/genética , Proteínas Proto-Oncogênicas c-sis/genética , Transdução de Sinais/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Genes Reporter , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Inibidoras de Diferenciação/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
12.
Biol Proced Online ; 19: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075153

RESUMO

BACKGROUND: Somatic cell nuclear transfer (SCNT) is a useful biotechnological tool for transgenic animal production using genetically modified somatic cells (GMSCs). However, there are several limitations preventing successful transgenic animal generation by SCNT, such as obtaining proper somatic donor cells with a sufficiently long life span and proliferative capacity for generating GMSCs. Here, we established simian virus 40 large T antigen (SV40LT)-mediated lifespan-extended canine fibroblast cells (SV40LT-K9 cells) and evaluated their potential as nuclei donors for SCNT, based on cellular integrity and SCNT embryo development. RESULTS: SV40LT did not cause canine cell transformation, based on cell morphology and proliferation rate. No anchorage-independent growth in vitro and tumorigenicity in vivo were observed. After SCNT with SV40LT-K9 cells, embryos were transferred into surrogate dogs. All dogs failed to become pregnant. Most embryos did not proceed past the 8-cell stage and only one surrogate showed an implantation trace in its oviduct, indicating that the cells rarely developed into blastocysts. Because of the absence of an in vitro maturation method for canine embryos, we performed identical experiments using porcine fibroblast cells. Similarly, SV40LT did not transform porcine fibroblast cells (SV40LT-Pig cells). During in vitro development of SV40LT-Pig cell-driven SCNT embryos, their blastocyst formation rate was clearly lower than those of normal cells. Karyotyping analysis revealed that both SV40LT-K9 and SV40LT-Pig cells had aberrant chromosomal statuses. CONCLUSIONS: Although lifespan-extended canine and porcine cells via SV40LT exhibit no apparent transforming changes, they are inappropriate for use as nuclei donors for SCNT because of their aneuploidy.

13.
Tumour Biol ; 39(10): 1010428317729933, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29072131

RESUMO

Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."


Assuntos
Diferenciação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Autorrenovação Celular , Humanos , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais
14.
Tumour Biol ; 39(5): 1010428317692244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28459217

RESUMO

Resistance to conventional therapies and frequent recurrence are the major obstacles to the treatment of high-grade gliomas, including glioblastoma. Thus, the development of new therapeutic strategies to overcome these obstacles is necessary to improve the treatment outcomes. In this study, we found that verapamil, a pan-adenosine triphosphate-binding cassette transporter and L-type voltage-dependent calcium channel inhibitor, sensitized U87MG glioma cells to carmustine- and irradiation-induced senescence. Furthermore, our results indicated that verapamil treatment, in combination with carmustine and irradiation, rendered U87MG glioma cells and several patient-derived glioma stem cells more sensitive to therapy-induced senescence than individual or dual-combination treatments. When investigating the underlying mechanism, we found that verapamil treatment markedly decreased intracellular reactive oxygen species and calcium ion levels. Reactive oxygen species reduction with N-acetylcysteine, a reactive oxygen species scavenger, rendered U87MG glioma cells more sensitive to carmustine and irradiation whereas the protein kinase C agonist, phorbol 12-myristate 13-acetate, mitigated the effects of carmustine and irradiation. Taken together, our results indicate that verapamil may be a potent therapeutic sensitizer for increasing the effectiveness of glioblastoma treatment.


Assuntos
Carmustina/administração & dosagem , Glioma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Verapamil/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Cálcio/metabolismo , Canais de Cálcio Tipo L/biossíntese , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Terapia Combinada , Glioma/patologia , Glioma/radioterapia , Humanos , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Espécies Reativas de Oxigênio/metabolismo
15.
Hepatology ; 61(6): 1978-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25627085

RESUMO

UNLABELLED: Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Epithelial-mesenchymal transition (EMT) is related to self-renewal capacity and circulating tumor cell (CTC) characteristics for tumor metastasis. Although tumor metastasis is a life-threatening, complicated process that occurs through circulation of tumor cells, mechanistic aspects of self-renewal and circulating capacities have been largely unknown. Hepatic transmembrane 4 L six family member 5 (TM4SF5) promotes EMT for malignant growth and migration, so it was rationalized that TM4SF5, as a hepatocellular carcinoma (HCC) biomarker, might be important for metastatic potential. Here, self-renewal capacity by TM4SF5 was mechanistically explored using hepatocarcinoma cells with or without TM4SF5 expression, and we explored whether they became CTCs using mouse liver-orthotopic model systems. We found that TM4SF5-dependent sphere growth correlated with CD24(-) , aldehyde dehydrogenase (ALDH) activity, as well as a physical association between CD44 and TM4SF5. Interaction between TM4SF5 and CD44 was through their extracellular domains with N-glycosylation modifications. TM4SF5/CD44 interaction activated proto-oncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3)/Twist-related protein 1 (Twist1)/B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling for spheroid formation, whereas disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts using 200∼5,000 cells per injection, TM4SF5-positive tumors exhibited subpopulations with locally increased CD44 expressions, supporting for tumor cell differentiation. TM4SF5-positive, but not TM4SF5- or CD44-knocked-down, cells were identified circulating in blood 4-6 weeks after orthotopic liver injection using in vivo laser scanning endomicroscopy. Anti-TM4SF5 reagent blocked their metastasis to distal intestinal organs. CONCLUSION: TM4SF5 promotes self-renewal and CTC properties supported by TM4SF5(+) /CD44(+(TM4SF5-bound)) /ALDH(+) /CD24(-) markers during HCC metastasis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptores de Hialuronatos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Proteínas de Membrana/metabolismo , Células Neoplásicas Circulantes/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo Repressor Polycomb 1/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Esferoides Celulares , Proteína 1 Relacionada a Twist/metabolismo , Quinases da Família src/metabolismo
16.
Tumour Biol ; 37(2): 2473-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26383528

RESUMO

High-grade gliomas are considered the most malignant of brain tumors and have a poor prognosis. In a previous study, we showed that LIM domain only 2 (LMO2) regulates glioma stem cell properties and tumor angiogenesis and gave rise to highly invasive glioma xenografts. Glioma invasion in the surrounding parenchymal tissues is a major hurdle with respect to eliminating glioma by surgery. Invasive glioma cells are considered one of the main culprits for the recurrence of tumors after therapies. In the current study, we focused on determining the molecular mechanism(s) by which LMO2 regulates glioma cell migration and invasion. Forced expression of LMO2 in human U87MG glioma cells led to glioma invasion, as determined by in vivo xenograft assays and enhanced in vitro migration and invasion. LMO2 was associated with increased levels of cytosolic p27(Kip1) protein. LMO2 possibly induced the stabilization and augmented interactions between p27(Kip1) and RhoA. We knocked down the expression of p27(Kip1), which led to a decrease in LMO2-driven glioma cell migration and invasion. Taken together, our findings indicate that LMO2 promotes glioma cell migration and invasion by increasing the levels of cytosolic p27(Kip1).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Citosol/metabolismo , Glioma/metabolismo , Glioma/patologia , Proteínas com Domínio LIM/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Citosol/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Tumour Biol ; 37(5): 5857-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26586398

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17-20 % of GBM cells dead, but resulted in 60-80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21(CIP1)-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.


Assuntos
Senescência Celular/efeitos da radiação , Glioblastoma/metabolismo , Glioblastoma/patologia , Fenótipo , Animais , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/radioterapia , Xenoenxertos , Humanos , Camundongos , NF-kappa B/metabolismo , Ativação Transcricional
18.
Brain ; 138(Pt 9): 2553-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121981

RESUMO

Upregulation of microRNA-21 (miR-21) is known to be strongly associated with the proliferation, invasion, and radio-resistance of glioma cells. However, the regulatory mechanism that governs the biogenesis of miR-21 in glioma is still unclear. Here, we demonstrate that the DEAD-box RNA helicase, DDX23, promotes miR-21 biogenesis at the post-transcriptional level. The expression of DDX23 was enhanced in glioma tissues compared to normal brain, and expression level of DDX23 was highly associated with poor survival of glioma patients. Specific knockdown of DDX23 expression suppressed glioma cell proliferation and invasion in vitro and in vivo, which is similar to the function of miR-21. We found that DDX23 increased the level of miR-21 by promoting primary-to-precursor processing of miR-21 through an interaction with the Drosha microprocessor. Mutagenesis experiments critically demonstrated that the helicase activity of DDX23 was essential for the processing (cropping) of miR-21, and we further found that ivermectin, a RNA helicase inhibitor, decreased miR-21 levels by potentially inhibiting DDX23 activity and blocked invasion and cell proliferation. Moreover, treatment of ivermectin decreased glioma growth in mouse xenografts. Taken together, these results suggest that DDX23 plays an essential role in glioma progression, and might thus be a potential novel target for the therapeutic treatment of glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , RNA Helicases DEAD-box/metabolismo , Glioma/metabolismo , MicroRNAs/biossíntese , Animais , Antiparasitários/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Bases de Dados Factuais/estatística & dados numéricos , Glioma/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Ivermectina/farmacologia , Camundongos , MicroRNAs/genética , RNA Interferente Pequeno/farmacologia , Transdução Genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Reprod Dev ; 62(2): 177-85, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26821870

RESUMO

The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair.


Assuntos
Células-Tronco Embrionárias/ultraestrutura , Fertilização in vitro/métodos , Técnicas de Transferência Nuclear , Animais , Apoptose , Blastocisto/citologia , Linhagem Celular , Núcleo Celular/ultraestrutura , Técnicas de Cocultura , Citoplasma/ultraestrutura , Células-Tronco Embrionárias/citologia , Retículo Endoplasmático Rugoso/ultraestrutura , Fibroblastos/ultraestrutura , Camundongos , Camundongos Endogâmicos ICR , Microscopia Eletrônica de Transmissão , Microvilosidades/ultraestrutura , Mitocôndrias/ultraestrutura , Fagocitose , Suínos
20.
Anim Biotechnol ; 27(2): 126-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26913554

RESUMO

Comparing the coding and regulatory sequences of genes in different species provides information on whether proteins translated from genes have conserved functions or gene expressions are regulated by analogical mechanisms. Herein, we compared the coding and regulatory sequences of glial fibrillary acidic protein (GFAP) from humans, mice, and pigs. The GFAP gene encodes a class III intermediate filament protein expressed specifically in astrocytes of the central nervous system. On comparing the mRNA, regulatory region (promoter), and protein sequences of GFAP gene in silico, we found that GFAP mRNA 3'-untranslated region (3'-UTR), promoter, and amino acid sequences showed higher similarities between humans and pigs than between humans and mice. In addition, the promoter-luciferase reporter gene assay revealed that the pig GFAP promoter functioned in human astrocytes. Notably, the 1.8-kb promoter fragment upstream from transcription initiation site showed strongest transcriptional activity compared to 5.2-kb DNA fragment or other regions of GFAP promoter. We also found that pig GFAP mRNA and promoter activity increased in pig fibroblasts by human IL-1ß treatment. Taken together, these results suggest that the regulatory mechanisms and functions of pig genes might be more similar to those of humans than mice, indicating that pigs, particularly miniature pigs, are a useful model for studying human biological and pathological events.


Assuntos
Proteína Glial Fibrilar Ácida/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica/genética , Animais , Astrócitos , Humanos , Camundongos , RNA Mensageiro/química , RNA Mensageiro/genética , Suínos , Porco Miniatura/genética , Regiões não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA