Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Technol Health Care ; 28(S1): 383-390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364171

RESUMO

BACKGROUND: Gait variability and fractal dynamics may be affected by the walking duration. OBJECTIVE: The purpose of this study is to examine the reproducibility of stride time while walking on a self-paced treadmill. METHODS: Fifteen young and healthy subjects walked on the treadmill for 10 minutes. Three to eight minutes duration of the data were used to compare the trial-to-trial and day-to-day reproducibility of the average, variability, and fractal dynamics of stride time. RESULTS: The results show that all variables had high trial-to-trial reproducibility. In the day-to-day results, the average walking speed and mean stride time showed reproducibility without regard for duration, but the variability and gait fractal dynamics showed differences in reproducibility according to duration. The variability and fractal dynamics showed better reproducibility in less than 5 minutes and over time, respectively. However, both variables generally showed improved reproducibility when average data from two to three rounds were used. CONCLUSION: Based on the results of this study, it is proposed that variability should be examined using data of 5 min or less, and fractal dynamics should be examined using 5 min or more of repeated data when performing walking tests from a gait dynamics perspective.


Assuntos
Caminhada/fisiologia , Fenômenos Biomecânicos , Teste de Esforço , Fractais , Marcha/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
2.
Biomed Res Int ; 2016: 4318917, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110564

RESUMO

We developed a two-step chemical bonding process using photosensitizer molecules to fabricate photofunctional nanolayer coatings on hematoporphyrin- (HP-) coated Ti substrates. In the first step, 3-aminopropyltriethoxysilane was covalently functionalized onto the surface of the Ti substrates to provide heterogeneous sites for immobilizing the HP molecules. Then, HP molecules with carboxyl groups were chemically attached to the amine-terminated nanolayer coatings via a carbodiimide coupling reaction. The microstructure and elemental and phase composition of the HP-coated Ti substrates were investigated using field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The photophysical properties of the photofunctional nanolayer coatings were confirmed using reflectance ultraviolet-visible absorption and emission spectrophotometry. The singlet oxygen generation efficiency of the photofunctional nanolayer coatings was determined using the decomposition reaction of 1,3-diphenylisobenzofuran. The HP-coated Ti substrates exhibited good biocompatibility without any cytotoxicity, and these nanolayer coatings generated singlet oxygen, which can kill microorganisms using only visible light.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Hematoporfirinas/química , Fármacos Fotossensibilizantes/química , Titânio/química , Animais , Bactérias/efeitos dos fármacos , Benzofuranos/química , Carbodi-Imidas/química , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Hematoporfirinas/farmacologia , Camundongos , Microscopia Eletrônica de Varredura , Nanotecnologia , Fármacos Fotossensibilizantes/farmacologia , Propilaminas/química , Silanos/química , Oxigênio Singlete/química , Análise Espectral , Propriedades de Superfície
3.
J Nanosci Nanotechnol ; 15(11): 9045-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726640

RESUMO

Nano-metal with nano-thin exfoliated (NTE) graphite hybrid material has been synthesized by radio frequency (RF) thermal plasma. A micro-sized nickel powder and the NTE graphite powder were fed into the RF plasma and nano sized nickel particles attached to the surface of the NTE graphite were found. In the high temperature of RF thermal plasma that is of higher than 10,000 K, the NTE graphite was not vaporized or damaged, while the metal powder was vaporized. The size of nickel nanoparticles on the NTE graphite was 40 80 nme. The size and number density of produced metal nanoparticle can be controlled by the process pressure in a reactor, the feeding ratio of raw materials, and the flow rate of working gas. X-ray diffraction results of the produced hybrid nano material indicate that there was a bonding between the nano metal and the NTE graphite. The inert nature of surface of the NTE graphite has been a barrier for the NTE graphite to be used a compounding additive. The nano metal covered NTE graphite will open up many potential applications of NTE graphite and polymer compound materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA