RESUMO
Microglia, the parenchymal brain macrophages of the central nervous system, have emerged as critical players in brain development and homeostasis. The immune functions of these cells, however, remain less well defined. We investigated contributions of microglia in a relapsing-remitting multiple sclerosis paradigm, experimental autoimmune encephalitis in C57BL/6 x SJL F1 mice. Fate mapping-assisted translatome profiling during the relapsing-remitting disease course revealed the potential of microglia to interact with T cells through antigen presentation, costimulation and coinhibition. Abundant microglia-T cell aggregates, as observed by histology and flow cytometry, supported the idea of functional interactions of microglia and T cells during remission, with a bias towards regulatory T cells. Finally, microglia-restricted interferon-γ receptor and major histocompatibility complex mutagenesis significantly affected the functionality of the regulatory T cell compartment in the diseased central nervous system and remission. Collectively, our data establish critical non-redundant cognate and cytokine-mediated interactions of microglia with CD4+ T cells during autoimmune neuroinflammation.
Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Microglia , Linfócitos T Reguladores/patologia , Camundongos Endogâmicos C57BL , Comunicação CelularRESUMO
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Animais , Monócitos/imunologia , Monócitos/citologia , Camundongos , Diferenciação Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/citologia , Pulmão/imunologia , Homeostase , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Linhagem da Célula , Transferência AdotivaRESUMO
The developmental and molecular heterogeneity of tissue macrophages is unravelling, as are their diverse contributions to physiology and pathophysiology. Moreover, also given tissues harbor macrophages in discrete anatomic locations. Functional contributions of specific cell populations can in mice be dissected using Cre recombinase-mediated mutagenesis. However, single promoter-based Cre models show limited specificity for cell types. Focusing on macrophages in the brain, we establish here a binary transgenic system involving complementation-competent NCre and CCre fragments whose expression is driven by distinct promoters: Sall1ncre: Cx3cr1ccre mice specifically target parenchymal microglia and compound transgenic Lyve1ncre: Cx3cr1ccre animals target vasculature-associated macrophages, in the brain, as well as other tissues. We imaged the respective cell populations and retrieved their specific translatomes using the RiboTag in order to define them and analyze their differential responses to a challenge. Collectively, we establish the value of binary transgenesis to dissect tissue macrophage compartments and their functions.
Assuntos
Encéfalo/citologia , Sistema Nervoso Central/fisiologia , Integrases/metabolismo , Macrófagos/fisiologia , Microglia/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de ÓrgãosRESUMO
Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.
Assuntos
Endotoxinas/imunologia , Interleucina-10/metabolismo , Microglia/imunologia , Microglia/metabolismo , Animais , Biomarcadores , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Imunofenotipagem , Interleucina-10/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , CamundongosRESUMO
Conditional mutagenesis and fate mapping have contributed considerably to our understanding of physiology and pathology. Specifically, Cre recombinase-based approaches allow the definition of cell type-specific contributions to disease development and of inter-cellular communication circuits in respective animal models. Here we compared Cx3 cr1CreER and Sall1CreER transgenic mice and their use to decipher the brain macrophage compartment as a showcase to discuss recent technological advances. Specifically, we highlight the need to define the accuracy of Cre recombinase expression, as well as strengths and pitfalls of these particular systems that should be taken into consideration when applying these models.
Assuntos
Encéfalo , Integrases , Macrófagos , Camundongos Transgênicos , Modelos Animais , Animais , Camundongos , Fatores de TranscriçãoRESUMO
Microglia are resident immune cells in the CNS, strategically positioned to clear dead cells and debris, and orchestrate CNS inflammation and immune defense. In steady state, these macrophages lack MHC class II (MHCII) expression, but microglia activation can be associated with MHCII induction. Whether microglial MHCII serves antigen presentation for critical local T-cell restimulation in CNS auto-immune disorders or modulates microglial signaling output remains under debate. To probe for such scenarios, we generated mice harboring an MHCII deficiency in microglia, but not peripheral myeloid cells. Using the CX3 CR1CreER -based approach we report that microglial antigen presentation is obsolete for the establishment of EAE, with disease onset, progression, and severity unaltered in mutant mice. Antigen presentation-independent roles of microglial MHCII were explored using a demyelination model induced by the copper chelator cuprizone. Absence of microglial I-Ab did not affect the extent of these chemically induced white matter alterations, nor did it affect microglial proliferation or gene expression associated with locally restricted de- and remyelination.
Assuntos
Apresentação de Antígeno/imunologia , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Macrófagos/imunologia , Microglia/imunologia , Animais , Proliferação de Células , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologiaRESUMO
Cancer stem-like cells (CSLCs) contribute to the initiation and recurrence of tumors and to their resistance to conventional therapies. In this study, small interfering RNA (siRNA)-based screening of â¼4800 druggable genes in 3-dimensional CSLC cultures in comparison to 2-dimensional bulk cultures of U87 glioma cells revealed 3 groups of genes essential for the following: survival of the CSLC population only, bulk-cultured population only, or both populations. While diverse biologic processes were associated with siRNAs reducing the bulk-cultured population, CSLC-eliminating siRNAs were enriched in a few functional categories, such as lipid metabolism, protein metabolism, and gene expression. Interestingly, siRNAs that selectively reduced CSLC only were found to target genes for cholesterol and unsaturated fatty acid synthesis. The lipidomic profile of CSLCs revealed increased levels of monounsaturated lipids. Pharmacologic blockage of these target pathways reduced CSLCs, and this effect was eliminated by addition of downstream metabolite products. The present CSLC-sensitive target categories provide a useful resource that can be exploited for the selective elimination of CSLCs.-Song, M., Lee, H., Nam, M.-H., Jeong, E., Kim, S., Hong, Y., Kim, N., Yim, H. Y., Yoo, Y.-J., Kim, J. S., Kim, J.-S., Cho, Y.-Y., Mills, G. B., Kim, W.-Y., Yoon, S. Loss-of-function screens of druggable targetome against cancer stem-like cells.
Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias Experimentais/metabolismo , Interferência de RNA , RNA Interferente PequenoRESUMO
Nanoparticulate vaccines are promising tools to overcome cancer immune evasion. However, a deeper understanding on nanoparticle-immune cell interactions and treatments regime is required for optimal efficacy. We provide a comprehensive study of treatment schedules and mode of antigen-association to nanovaccines on the modulation of T cell immunity in vivo, under steady-state and tumor-bearing mice. The coordinated delivery of antigen and two adjuvants (Monophosphoryl lipid A, oligodeoxynucleotide cytosine-phosphate-guanine motifs (CpG)) by nanoparticles was crucial for dendritic cell activation. A single vaccination dictated a 3-fold increase on cytotoxic memory-T cells and raised antigen-specific immune responses against B16.M05 melanoma. It generated at least a 5-fold increase on IFN-γ cytokine production, and presented over 50% higher lymphocyte count in the tumor microenvironment, compared to the control. The number of lymphocytes at the tumor site doubled with triple immunization. This lymphocyte infiltration pattern was confirmed in mammary huHER2 carcinoma, with significant tumor reduction.
Assuntos
Neoplasias da Mama/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Carcinogênese/efeitos dos fármacos , Nanopartículas/administração & dosagem , Linfócitos T Citotóxicos/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Vacinas Anticâncer/química , Carcinogênese/metabolismo , Carcinogênese/patologia , Feminino , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células Tumorais CultivadasRESUMO
BACKGROUND: There are debates on representation and generalizability of previous randomized controlled trials about anti-dementia agents in the oldest old population. In this context, we aimed to investigate the efficacy and safety of anti-dementia agents in the very elderly patients with dementia. METHODS: We conducted a retrospective study of patients with dementia 1) who were 85 years or older, 2) got started anti-dementia agents, and 3) went through follow-up evaluation about one year thereafter. As a control, patients with dementia who were less than 85 years old with similar inclusion criteria were randomly selected during the same period. The adverse drug effects and discontinuation rates were investigated with self-reported complaint after starting or increasing anti-dementia drugs. For efficacy outcome, we also analyzed the change in neuropsychological results during follow-up period. RESULTS: A total of 77 dementia patients who were at least 85 years were enrolled. As a control group, 78 patients with dementia who were younger than 85 was analyzed. The adverse drug effects were observed in 26 (33.3%) patients in the younger old and in 26 (33.8%) in the oldest old (P = 0.095). Twenty-one patients (26.9%) in the younger old group and 13 patients (16.9%) in the oldest old group discontinued their medication (P = 0.131). There were no differences between the two groups about changes of Mini-Mental State Examination and Instrumental Activity of Daily Living scores over time. CONCLUSION: The use of anti-dementia agents in the oldest old dementia patients may be safe and effective as the younger old dementia patients.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Nootrópicos/uso terapêutico , Atividades Cotidianas , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Donepezila , Exantema/etiologia , Feminino , Humanos , Indanos/efeitos adversos , Indanos/uso terapêutico , Masculino , Adesão à Medicação , Náusea/etiologia , Testes Neuropsicológicos , Nootrópicos/efeitos adversos , Piperidinas/efeitos adversos , Piperidinas/uso terapêutico , Estudos Retrospectivos , Rivastigmina/efeitos adversos , Rivastigmina/uso terapêutico , Resultado do TratamentoRESUMO
BACKGROUND: The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. METHODS: The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. RESULTS: Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. CONCLUSIONS: The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd.
Assuntos
Venenos de Crotalídeos/genética , Receptores ErbB/genética , Interleucina-12/genética , Neoplasias/genética , Vírus Sendai/genética , Células A549 , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Venenos de Crotalídeos/metabolismo , Doxorrubicina/farmacologia , Receptores ErbB/metabolismo , Terapia Genética/métodos , Proteína HN/genética , Proteína HN/metabolismo , Humanos , Interleucina-12/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/terapia , Vírus Sendai/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Virossomos/genética , Virossomos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
BACKGROUND: Many patients report discomfort because of the unpleasant taste of bowel preparation solutions. OBJECTIVE: This study aimed to determine whether adding orange juice to 2 L of polyethylene glycol plus ascorbic acid is effective for reducing patient discomfort and improving palatability during bowel preparation. DESIGN: This was a single-blinded, randomized controlled trial. SETTINGS: The study was conducted at a tertiary referral hospital and a generalized hospital. PATIENTS: Consecutive outpatients and inpatients were randomly allocated to drink 2 L of polyethylene glycol-ascorbic acid or 2 L of polyethylene glycol-ascorbic acid with orange juice in a single dose or a split dose. MAIN OUTCOME MEASURES: Tolerability, palatability score, willingness, and related adverse events were investigated by questionnaires. Bowel cleansing was rated using the Aronchick scale. Each score was graded on a 5-point scale. RESULTS: A total of 107 patients, 53 in the orange juice group and 54 in the polyethylene glycol-ascorbic acid group who underwent elective colonoscopy were enrolled. The palatability score (mean ± SD) was higher in the orange juice group than in the control group (2.36 ± 0.76 vs 1.78 ± 0.88; p = 0.005). Nausea was less frequent in the orange juice group (26.4% vs 59.3%; p = 0.001). Total amount of bowel preparation ingested was not significantly different between the groups (p = 0.44). The bowel preparation score (mean ± SD) was not significantly different (1.49 ± 0.80 vs 1.43 ± 0.77; p = 0.94). Willingness to repeat the same process was higher in the orange juice group (90.4% vs 66.7%; p = 0.003). LIMITATIONS: This study is limited because only ambulatory patients were enrolled. CONCLUSIONS: Orange juice intake before drinking 2 L of polyethylene glycol-ascorbic acid for colonoscopy can reduce patient discomfort, resulting in improved acceptability and patient compliance. This method is as effective for bowel cleansing as polyethylene glycol.
Assuntos
Bebidas , Catárticos/administração & dosagem , Citrus , Preferência do Paciente , Polietilenoglicóis/administração & dosagem , Paladar , Adulto , Idoso , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/efeitos adversos , Bebidas/efeitos adversos , Catárticos/efeitos adversos , Citrus/efeitos adversos , Pólipos do Colo/diagnóstico , Colonoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Náusea/induzido quimicamente , Polietilenoglicóis/efeitos adversos , Método Simples-Cego , Inquéritos e Questionários , Vitaminas/administração & dosagem , Vitaminas/efeitos adversosRESUMO
BACKGROUND: Microglia in the brain are the counterpart of macrophages and it functions as a first defense in the brain. The double-edged feature of microglia has explained that the inflammatory state of microglia in aged brains induces them to over-respond to small stimuli that are otherwise well controlled in young brains. The clinical effect of microglia in patients with Parkinson's disease (PD) is poorly defined. This prospective study assessed the peripheral concentrations of hs-CRP, a protein able to reflect neuroinflammation in the CNS, in de novo PD patients with varying ages of onset. METHODS: We examined 435 patients with de novo PD and 221 healthy subjects and the differences in hs-CRP between these groups were investigated. The PD group was classified into 4 subgroups according to the age of de novo PD to investigate the relationship between hs-CRP and the aging process in de novo PD. RESULTS: There were significantly higher serum hs-CRP levels in patients with PD compared with healthy subjects. A post-hoc analysis of the 4 PD subgroups showed no significant differences in serum hs-CRP level. CONCLUSION: We assumed that neuroinflammatory reactions play a role in the pathogenesis of PD, but found no clinical evidence of a neuroprotective effect against PD in young brains. To clarify the role of microglia and aging in the pathogenesis of PD, future longitudinal studies involving a large cohort are required.
Assuntos
Envelhecimento/sangue , Doença de Parkinson/sangue , Fragmentos de Peptídeos/sangue , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos ProspectivosRESUMO
Since the classical studies of Pío del Río-Hortega, microglia research has come a long way. In particular, recent advances in bulk and single-cell (sc) transcriptomics have yielded many fascinating new insights into these intriguing immune cells at the interface with the central nervous system (CNS), both in small animal models and human samples. In parallel, tools developed by advanced mouse genetics have revealed the unique ontogeny of microglia and their striking dynamic interactions with other cells in the brain parenchyma. In this chapter, we will discuss various applications of the Cre/loxP-based approach that have enabled the study of microglia in their physiological context of the mouse brain. We will highlight selected key findings that have shaped our current understanding of these cells and discuss the technical intricacies of the Cre/loxP approach and some remaining challenges.
Assuntos
Encéfalo , Microglia , Animais , Camundongos , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/metabolismo , Integrases/metabolismo , Microglia/imunologia , Microglia/metabolismo , Mutagênese/imunologia , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Global gene expression profiling has provided valuable insights into the specific contributions of different cell types to various physiological processes. Notably though, both bulk and single-cell transcriptomics require the prior retrieval of the cells from their tissue context to be analyzed. Isolation protocols for tissue macrophages are, however, notoriously inefficient and, moreover, prone to introduce considerable bias and artifacts. Here, we will discuss a valuable alternative, originally introduced by Amieux and colleagues. This so-called RiboTag approach allows, in combination with respective macrophage-specific Cre transgenic lines, to retrieve macrophage translatomes from crude tissue extracts. We will review our experience with this ingenious method, focusing on the study of brain macrophages, including microglia and border-associated cells. We will elaborate on the advantages of the RiboTag approach that render it a valuable complement to standard cell sorting-based profiling strategies, especially for the investigation of tissue macrophages.
Assuntos
Artefatos , Macrófagos , Animais , Animais Geneticamente Modificados , Encéfalo , Separação CelularRESUMO
Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.
Assuntos
Técnicas de Transferência de Genes , Macrófagos , Animais , Camundongos , Animais Geneticamente Modificados , Dimerização , MutagêneseRESUMO
Alzheimer's disease (AD) is characterized by synaptic loss, which can result from dysfunctional microglial phagocytosis and complement activation. However, what signals drive aberrant microglia-mediated engulfment of synapses in AD is unclear. Here we report that secreted phosphoprotein 1 (SPP1/osteopontin) is upregulated predominantly by perivascular macrophages and, to a lesser extent, by perivascular fibroblasts. Perivascular SPP1 is required for microglia to engulf synapses and upregulate phagocytic markers including C1qa, Grn and Ctsb in presence of amyloid-ß oligomers. Absence of Spp1 expression in AD mouse models results in prevention of synaptic loss. Furthermore, single-cell RNA sequencing and putative cell-cell interaction analyses reveal that perivascular SPP1 induces microglial phagocytic states in the hippocampus of a mouse model of AD. Altogether, we suggest a functional role for SPP1 in perivascular cells-to-microglia crosstalk, whereby SPP1 modulates microglia-mediated synaptic engulfment in mouse models of AD.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Osteopontina/metabolismo , Fagócitos/metabolismo , Macrófagos/metabolismo , Fagocitose , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismoRESUMO
Monocyte-derived macrophages (Mφs) are crucial regulators during muscularis inflammation. However, it is unclear which micro-environmental factors are responsible for monocyte recruitment and anti-inflammatory Mφ differentiation in this paradigm. Here, we investigate Mφ heterogeneity at different stages of muscularis inflammation and determine how environmental cues can attract and activate tissue-protective Mφs. Results showed that muscularis inflammation induced marked alterations in mononuclear phagocyte populations associated with a rapid infiltration of Ly6c+ monocytes that locally acquired unique transcriptional states. Trajectory inference analysis revealed two main pro-resolving Mφ subpopulations during the resolution of muscularis inflammation, i.e. Cd206+ MhcIIhi and Timp2+ MhcIIlo Mφs. Interestingly, we found that damage to the micro-environment upon muscularis inflammation resulted in EGC activation, which in turn stimulated monocyte infiltration and the consequent differentiation in anti-inflammatory CD206+ Mφs via CCL2 and CSF1, respectively. In addition, CSF1-CSF1R signaling was shown to be essential for the differentiation of monocytes into CD206+ Mφs and EGC proliferation during muscularis inflammation. Our study provides a comprehensive insight into pro-resolving Mφ differentiation and their regulators during muscularis inflammation. We deepened our understanding in the interaction between EGCs and Mφs, thereby highlighting pro-resolving Mφ differentiation as a potential novel therapeutic strategy for the treatment of intestinal inflammation.
Assuntos
Macrófagos , Monócitos , Humanos , Inflamação , Neuroglia , Anti-InflamatóriosRESUMO
BACKGROUND: Long-term expression of the delivered target gene is critical for successful gene therapy. Recently, hepatic control region I (HCR I) originating from the apolipoprotein (apo)C-I pseudogene was shown to be a critical element for long-term gene expression in the liver of mice. HCR II is another hepatic control region of apoC-I. METHODS: HCR I, HCR II and HCR I/II-containing plasmids encoding factor IX were prepared and hydrodynamically transferred into the liver of normal and hemophilia B mice. Factor IX expression, clotting activity and formation of antibodies against the expressed gene product were compared. RESULTS: HCR I-, HCR II- and HCR I/II-containing plasmids all induced long-term gene expression in both normal and hemophilia B mice. Post-transfection factor IX expression in the hemophilia B mice remained above 500 ng/ml for 210 days. Antibodies against human factor IX were detected at a low level in the serum, although they had no effect on the levels and clotting activity of the expressed factor IX. CONCLUSIONS: We have shown in mouse models that hydrodynamic transfection of pBS-HCRII-HP-FIXA and pBS-HCRI/II-HP-FIXA was able to induce and maintain the expression and clotting activity of human factor IX for a long period of time at a potentially therapeutic level. With an appropriate delivery system, this type of plasmid vector could be clinically useful for the hepatic expression of therapeutic genes including human factor IX.
Assuntos
Fator IX/genética , Fator IX/metabolismo , Hemofilia B/genética , Hemofilia B/metabolismo , Fígado/metabolismo , Elementos Reguladores de Transcrição , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Dependovirus/genética , Modelos Animais de Doenças , Fator IX/imunologia , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Hemofilia B/terapia , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Tempo de Tromboplastina Parcial , Regiões Promotoras GenéticasRESUMO
Acute graft-versus-host disease (GVHD) can affect the central nervous system (CNS). The role of microglia in CNS-GVHD remains undefined. In agreement with microglia activation, we found that profound morphological changes and MHC-II and CD80 upregulation occurred upon GVHD induction. RNA sequencing-based analysis of purified microglia obtained from mice with CNS-GVHD revealed TNF upregulation. Selective TNF gene deletion in microglia of Cx3cr1creER Tnffl/- mice reduced MHC-II expression and decreased CNS T cell infiltrates and VCAM-1+ endothelial cells. GVHD increased microglia TGF-ß-activated kinase-1 (TAK1) activation and NF-κB/p38 MAPK signaling. Selective Tak1 deletion in microglia using Cx3cr1creER Tak1fl/fl mice resulted in reduced TNF production and microglial MHC-II and improved neurocognitive activity. Pharmacological TAK1 inhibition reduced TNF production and MHC-II expression by microglia, Th1 and Th17 T cell infiltrates, and VCAM-1+ endothelial cells and improved neurocognitive activity, without blocking graft-versus-leukemia effects. Consistent with these findings in mice, we observed increased activation and TNF production of microglia in the CNS of GVHD patients. In summary, we prove a role for microglia in CNS-GVHD, identify the TAK1/TNF/MHC-II axis as a mediator of CNS-GVHD, and provide a TAK1 inhibitor-based approach against GVHD-induced neurotoxicity.