Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(17): e2107189119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35467977

RESUMO

Iron-dependent peroxidation of polyunsaturated fatty acids (PUFAs) leads to ferroptosis. While detoxification reactions removing lipid peroxides in phospholipids such as that catalyzed by glutathione peroxidase 4 (GPX4) protect cells from ferroptosis, the mechanism through which cells prevent PUFA peroxidation was not completely understood. We previously identified Fas-associated factor 1 (FAF1) as a protein directly interacting with free PUFAs through its UAS domain. Here we report that this interaction is crucial to protect cells from ferroptosis. In the absence of FAF1, cultured cells became sensitive to ferroptosis upon exposure to physiological levels of PUFAs, and mice developed hepatic injury upon consuming a diet enriched in PUFA. Mechanistically, we demonstrate that FAF1 assembles a globular structure that sequesters free PUFAs into a hydrophobic core, a reaction that prevents PUFA peroxidation by limiting its access to iron. Our study suggests that peroxidation of free PUFAs contributes to ferroptosis, and FAF1 acts upstream of GPX4 to prevents initiation of ferroptosis by limiting peroxidation of free PUFAs.


Assuntos
Ferroptose , Animais , Morte Celular , Linhagem Celular , Células Cultivadas , Ácidos Graxos Insaturados/farmacologia , Camundongos
2.
J Korean Med Sci ; 39(42): e272, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39497563

RESUMO

BACKGROUND: Despite the proven effectiveness of oral antivirals against severe acute respiratory syndrome coronavirus 2 in randomized trials, their clinical reevaluation is vital in the context of widespread immunity and milder prevalent variants. This study aimed to assess the effectiveness of oral antivirals for coronavirus disease 2019 (COVID-19). METHODS: This retrospective cohort study utilized a target trial emulation framework to analyze patients with COVID-19 aged 60+ from January to December 2022. Data were obtained from the Korea Disease Control and Prevention Agency and Health Insurance Review and Assessment Service. The study involved 957,036 patients treated with nirmatrelvir/ritonavir and 243,360 treated with molnupiravir, each compared with the matched control groups. Primary outcome was progression to critical COVID-19 requiring advanced respiratory support. Secondary outcomes included progression to severe COVID-19, need for supplemental oxygen, and death within 30 days of the onset of COVID-19. Number needed to treat (NNT) derived from the absolute risk reduction. RESULTS: Nirmatrelvir/ritonavir was significantly associated with a reduced risk of severe (adjusted odds ratio [aOR], 0.823; 95% confidence interval [CI], 0.803-0.843), critical (aOR, 0.560; 95% CI, 0.503-0.624), and fatal COVID-19 (aOR, 0.694; 95% CI, 0.647-0.744). Similarly, molnupiravir reduced the risk of severe (aOR, 0.895; 95% CI, 0.856-0.937), critical (aOR, 0.672; 95% CI, 0.559-0.807), and fatal cases (aOR, 0.679; 95% CI, 0.592-0.779). NNTs for nirmatrelvir/ritonavir were 203.71 (severe), 1,230.12 (critical), and 691.50 (death); for molnupiravir, they were 352.70 (severe), 1,398.62 (critical), and 862.98 (death). Higher effectiveness was associated with older adults, unvaccinated individuals, and the late pandemic phase. CONCLUSION: Nirmatrelvir/ritonavir and molnupiravir are effective in preventing progression to severe disease in elderly adults with COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Ritonavir , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Masculino , Feminino , Estudos Retrospectivos , Idoso , República da Coreia , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Ritonavir/uso terapêutico , Administração Oral , COVID-19/mortalidade , Hidroxilaminas/uso terapêutico , Resultado do Tratamento , Idoso de 80 Anos ou mais , Citidina/análogos & derivados
3.
Sensors (Basel) ; 24(19)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39409472

RESUMO

Falls represent a significant risk factor, necessitating accurate classification methods. This study aims to identify the optimal placement of wearable sensors-specifically accelerometers, gyroscopes, and magnetometers-for effective fall-direction classification. Although previous research identified optimal sensor locations for distinguishing falls from non-falls, limited attention has been given to the classification of fall direction across different body regions. This study assesses inertial measurement unit (IMU) sensors placed at 12 distinct body locations to determine the most effective positions for capturing fall-related data. The research was conducted in three phases: first, comparing classifiers across all sensor locations to identify the most effective; second, evaluating performance differences between sensors placed on the left and right sides of the body; and third, exploring the efficacy of combining sensors from the upper and lower body regions. Statistical analyses of the results for the most effective classifier model demonstrate that the support vector machine (SVM) is more effective than other classifiers across all sensor locations, with statistically significant differences in performance. At the same time, the comparison between the left and right sensor locations shows no significant performance differences within the same anatomical areas. Regarding optimal sensor placement, the findings indicate that sensors positioned on the pelvis and upper legs in the lower body, as well as on the shoulder and head in the upper body, were the most effective results for accurate fall-direction classification. The study concludes that the optimal sensor configuration for fall-direction classification involves strategically combining sensors placed on the pelvis, upper legs, and lower legs.


Assuntos
Acelerometria , Acidentes por Quedas , Máquina de Vetores de Suporte , Dispositivos Eletrônicos Vestíveis , Humanos , Acidentes por Quedas/prevenção & controle , Acelerometria/instrumentação , Acelerometria/métodos , Masculino , Feminino , Adulto , Movimento (Física) , Adulto Jovem
4.
Molecules ; 29(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930946

RESUMO

Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Inflamação , Estresse Oxidativo , Piridonas , Pirimidinonas , Animais , Cisplatino/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Piridonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Pirimidinonas/farmacologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Morte Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
5.
Curr Issues Mol Biol ; 45(1): 337-352, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661510

RESUMO

Obstructive uropathy is a clinical condition that can lead to chronic kidney disease. However, treatments that can prevent the progression of renal injury and fibrosis are limited. Farrerol (FA) is a natural flavone with potent antioxidant and anti-inflammatory properties. Here, we investigated the effect of FA on renal injury and fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Mice underwent a sham or UUO operation and received intraperitoneal injections of FA (20 mg/kg) daily for 8 consecutive days. Histochemistry, immunohistochemistry and immunofluorescence staining, TdT-mediated dUTP nick end labeling assay, Western blotting, gene expression analysis, and biochemical tests were performed. FA attenuated renal dysfunction (p < 0.05) and ameliorated renal tubular injury (p < 0.01) and interstitial fibrosis (p < 0.001) in UUO mice. FA alleviated 4-hydroxynonenal expression (p < 0.001) and malondialdehyde levels (p < 0.01) by regulating pro-oxidant and antioxidant enzymes. Apoptosis in the kidneys of UUO mice was inhibited by FA (p < 0.001), and this action was accompanied by decreased expression of cleaved caspase-3 (p < 0.01). Moreover, FA alleviated pro-inflammatory cytokine production (p < 0.001) and macrophage infiltration (p < 0.01) in the kidneys of UUO mice. These results suggest that FA ameliorates renal injury and fibrosis in the UUO model by inhibiting oxidative stress, apoptosis, and inflammation.

6.
Biotechnol Bioeng ; 120(2): 511-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321324

RESUMO

To realize lignocellulose-based bioeconomy, efficient conversion of xylose into valuable chemicals by microbes is necessary. Xylose oxidative pathways that oxidize xylose into xylonate can be more advantageous than conventional xylose assimilation pathways because of fewer reaction steps without loss of carbon and ATP. Moreover, commodity chemicals like 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone can be produced from the intermediates of xylose oxidative pathway. However, successful implementations of xylose oxidative pathway in yeast have been hindered because of the secretion and accumulation of xylonate which is a key intermediate of the pathway, leading to low yield of target product. Here, high-yield production of 3,4-dihydroxybutyrate from xylose by engineered yeast was achieved through genetic and environmental perturbations. Specifically, 3,4-dihydroxybutyrate biosynthetic pathway was established in yeast through deletion of ADH6 and overexpression of yneI. Also, inspired by the mismatch of pH between host strain and key enzyme of XylD, alkaline fermentations (pH ≥ 7.0) were performed to minimize xylonate accumulation. Under the alkaline conditions, xylonate was re-assimilated by engineered yeast and combined product yields of 3,4-dihydroxybutyrate and 3-hydroxybutyrolactone resulted in 0.791 mol/mol-xylose, which is highest compared with previous study. These results shed light on the utility of the xylose oxidative pathway in yeast.


Assuntos
Saccharomyces cerevisiae , Xilose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Engenharia Metabólica/métodos , Fermentação
7.
J Intensive Care Med ; 38(6): 562-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36789759

RESUMO

BACKGROUND: To describe the influence of COVID-19 caseload surges and overall capacity in the intensive care unit (ICU) on mortality among US population and census divisions. METHODS: A retrospective analysis of the national COVID ActNow database between January 1, 2021 until March 1, 2022. The main outcome used was COVID-19 weekly mortality rates, which were calculated and incorporated into several generalized estimation of effects models with predictor variables that included ICU bed capacity, as well as ICU capacity used by COVID cases while adjusting for ratios of vaccinations in populations, case density, and percentage of the population over the age of 65. RESULTS: Each 1% increase in general ICU capacity is correlated with approximately 5 more weekly deaths from COVID-19 per 100,000 population and each percentage increase in the number of patients with COVID-19 admitted to the ICU resulted in approximately 10 more COVID-19 deaths per week per 100,000 population. Significant differences in ability to handle caseload surges were observed across US census divisions. CONCLUSIONS: A strong association was observed between COVID-19 ICU surges, overall ICU surge, and increased mortality. Further research is needed to reveal best practices and public health measures to prevent ICU overcrowding amidst future pandemics and disaster responses.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Estudos Retrospectivos , Unidades de Terapia Intensiva
8.
Appl Microbiol Biotechnol ; 107(12): 3869-3875, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148338

RESUMO

L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fucose/metabolismo , Ácidos Graxos Voláteis/metabolismo , Açúcares
9.
J Korean Med Sci ; 38(27): e211, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37431541

RESUMO

BACKGROUND: Paxlovid is an oral antiviral drug that received emergency use authorization in South Korea for the treatment of patients with mild-to-moderate coronavirus disease 2019 (COVID-19) on January 14, 2022. Since the onset of the severe acute respiratory syndrome coronavirus 2 pandemic, the virus has continued to evolve. The emergence of new variants has raised concerns about possible reductions in the effectiveness of vaccines and drugs. The effectiveness of Paxlovid in patients infected with the omicron variant and subvariants has not yet been determined. This study assessed the effectiveness of Paxlovid at reducing the risk of severe/critical illness or death and death in patients with mild-to-moderate COVID-19 caused by omicron subvariant BA.5. METHODS: In this nationwide retrospective cohort study, data on 8,902,726 patients were collected from four sources (the Drug Utilization Review database, COVID-19 Patient Information Management System, confirmed patient information, and basic epidemiological investigation data) between July 1 and November 30, 2022. Multivariable logistic regression analysis was conducted, with adjustment for age, sex, severe acute respiratory syndrome coronavirus 2 immunity (vaccination), and comorbidities. RESULTS: A total of 1,936,925 patients with COVID-19 were included in the analysis, including 420,996 patients treated with Paxlovid, and 1,515,959 patients not treated with Paxlovid. Paxlovid treatment in patients aged ≥ 60 years of age was associated with significantly reduced risk of severe/critical illness or death (46.0%), and death rate (32.5%), and its effectiveness was high, regardless of vaccination status. CONCLUSION: Paxlovid is effective at reducing the risk of death due to COVID-19 in patients with omicron BA.5 infection, especially in older patients, regardless of vaccination status. This suggests that older patients with COVID-19-related symptoms should be administered Paxlovid, regardless of their vaccination status, to reduce severity and risk of death.


Assuntos
Antivirais , COVID-19 , Humanos , Idoso , Pessoa de Meia-Idade , Antivirais/uso terapêutico , Estado Terminal , Estudos Retrospectivos , SARS-CoV-2 , República da Coreia/epidemiologia
10.
Plant Dis ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294154

RESUMO

Aralia cordata var. continentalis (Kitag), commonly known as Japanese spikenard, is an upright herbaceous perennial medicinal plant effective in relieving pain. It is also consumed as a leafy vegetable. Leaf spots and blight symptoms on A. cordata resulting in defoliation were observed in July 2021 from a research field with a disease incidence of nearly 40-50% from 80 plants in Yeongju, Korea. Brown spots with chlorotic halos first appear on the upper leaf surface (Fig. 1A). In the later stage, spots enlarge and coalesce; resulting in the leaves to dry-off (Fig. 1B). To isolate the causal agent, small pieces of diseased leaves displaying the lesion were surface-sterilized by 70% ethanol for 30 s and rinsed twice with sterile distilled water (SDW). Later, the tissues were crushed in a sterile 2.0-ml Eppendorf tube with a rubber pestle in SDW. The suspension was serially diluted and spread on potato dextrose agar (PDA) medium, incubated at 25°C for 3 days. A total of 3 isolates were obtained from the infected leaves. Pure cultures were obtained by the monosporic culture technique (Choi et al. 1999). After 2 to 3 days of incubation with a 12-h photoperiod, the fungus initially produced gray mold colonies in olive color, and the edges of the mold appeared white with a velvety texture after 20 days (Fig. 1C). Microscopic observations revealed small, single-celled, rounded, and pointed conidia that measured 6.67 ± 0.23 µm × 4.18 ± 0.12 µm (length × width) (n=40 spores) (Fig. 1D). On the basis of its morphology, the causal organism was identified as Cladosporium cladosporioides (Torres et al. 2017). For molecular identification, pure colonies of three single-spore isolates were used for DNA extraction. A fragment of the ITS, ACT, and TEF1-α were amplified using the primers ITS1/ITS4 (Zarrin et al. 2016), ACT-512F/ACT-783R, and EF1-728F/EF1-986R, respectively, by PCR (Carbone et al. 1999). The DNA sequences from all three isolates (GYUN-10727, GYUN-10776, and GYUN-10777) were identical. The resulting ITS (ON005144), ACT (ON014518), and TEF1-α (OQ286396) sequences from the representative isolate GYUN-10727 were 99 to 100% identical to the C. cladosporioides (ITS: KX664404, MF077224; ACT: HM148509; TEF1-α: HM148268, HM148266). The phylogenetic dendrogram was constructed from the comparative analysis of ITS, ACT, and TEF1-α gene sequences, showing the relationship between Cladosporium cladosporioides and related Cladosporium species (Fig. 2). The isolate GYUN-10727 has been deposited in Korean Agricultural Culture Collection (KACC 410009), and used as a representative strain in this study. For the pathogenicity test, healthy fresh leaves (3 leaves per plant) of 3-months-old A. cordata plants in pots were spray inoculated with conidial suspensions (1 × 104 conidia/mL) of GYUN-10727, which was obtained from a 7-day-old PDA culture. Leaves sprayed with SDW were considered as control. After 15 days of incubation at 25°C ± 5°C under greenhouse conditions, necrotic lesions were observed on the inoculated A. cordata leaves, while control leaves did not develop any disease symptoms. The experiment was performed twice with three replicates (pots) per treatment. The pathogen was re-isolated from the symptomatic A. cordata leaves, but not from control plants, to fulfill Koch's postulates. The re-isolated pathogen was identified by PCR. Cladosporium cladosporioides has been reported to cause diseases in sweet pepper (Krasnow et al. 2022) and garden peas (Gubler et al. 1999). To our knowledge, this is the first report of C. cladosporioides causing leaf spots of A. cordata in Korea. The identification of this pathogen will help develop strategies to efficiently control the disease in A. cordata.

11.
Sensors (Basel) ; 23(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37514794

RESUMO

This paper presents a 1600-pixel integrated neural stimulator with a correlated double-sampling readout (DSR) circuit for a subretinal prosthesis. The retinal stimulation chip inserted beneath the photoreceptor layer comprises an array of an active pixel sensor (APS) and biphasic pulse shaper. The DSR circuit achieves a high signal-to-noise ratio (SNR) of the APS with a short integration time to simultaneously improve the temporal and spatial resolutions of restored vision. This DSR circuit is adopted along with a 5 × 5-pixel tile, which reduces pixel size and improves the SNR by increasing the area occupied by storage capacitors. Moreover, a low-mismatch reference generator enables a low standard deviation between individual pulse shapers. The 1600-pixel retinal chip, fabricated using the 0.18 µm 1P6M CMOS process, occupies a total area of 4.3 mm × 3.3 mm and dissipates an average power of 3.4 mW; this was demonstrated by determining the stimulus current patterns corresponding to the illuminations of an LCD projector. Experimental results show that the proposed high-density stimulation array chip can achieve a high temporal resolution owing to its short integration time.


Assuntos
Membros Artificiais , Retina , Retina/diagnóstico por imagem , Implantação de Prótese
12.
Metabolomics ; 18(7): 48, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781849

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) and osteoarthritis (OA) are clinicopathologically different. OBJECTIVES: We aimed to assess the feasibility of metabolomics in differentiating the metabolite profiles of synovial fluid between RA and OA using gas chromatography/time-of-flight mass spectrometry. METHODS: We first compared the global metabolomic changes in the synovial fluid of 19 patients with RA and OA. Partial least squares-discriminant, hierarchical clustering, and univariate analyses were performed to distinguish metabolites of RA and OA. These findings were then validated using synovial fluid samples from another set of 15 patients with RA and OA. RESULTS: We identified 121 metabolites in the synovial fluid of the first 19 samples. The score plot of PLS-DA showed a clear separation between RA and OA. Twenty-eight crucial metabolites, including hypoxanthine, xanthine, adenosine, citrulline, histidine, and tryptophan, were identified to be capable of distinguishing RA metabolism from that of OA; these were found to be associated with purine and amino acid metabolism. CONCLUSION: Our results demonstrated that metabolite profiling of synovial fluid could clearly discriminate between RA and OA, suggesting that metabolomics may be a feasible tool to assist in the diagnosis and advance the comprehension of pathological processes for diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Metabolômica/métodos , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo
13.
Microb Cell Fact ; 21(1): 204, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207743

RESUMO

BACKGROUND: Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. RESULTS: To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize L-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized L-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on L-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating L-fucose. As a result, we found that the engineered S. boulardii consumes L-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. CONCLUSION: To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing L-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut.


Assuntos
Probióticos , Saccharomyces boulardii , Animais , Escherichia coli , Fucose/metabolismo , Lactatos/metabolismo , Mamíferos , Análise do Fluxo Metabólico , Mucinas/metabolismo , Oxigênio/metabolismo , Probióticos/metabolismo , Propilenoglicol/metabolismo , Piruvatos/metabolismo , Saccharomyces boulardii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Org Biomol Chem ; 20(35): 6994-7000, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35993969

RESUMO

N-Substituted peptides, such as peptoids and ß-peptoids, have been reported to have unique structures with diverse functions, like catalysis and manipulation of biomolecular functions. Recently, the preorganization of monomer shape by restricting bond rotations about all backbone dihedral angles has been demonstrated to be useful for de novo design of peptoid structures. Such design strategies are hitherto unexplored for ß-peptoids; to date, no preorganized ß-peptoid monomers have been reported. Here, we report the first design strategy for ß-peptoids, in which all four backbone dihedral angles (ω, ϕ, θ, ψ) are rotationally restricted on a per-residue basis. The introduction of a cyclopentane constraint realized the preorganized monomer structure and led to a ß-peptoid with a stable twisted strand shape.


Assuntos
Peptoides , Ciclopentanos , Peptídeos/química , Peptoides/química
15.
FASEB J ; 34(1): 333-349, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914629

RESUMO

Kidney fibrosis is a common process of various kidney diseases leading to end-stage renal failure irrespective of etiology. Myofibroblasts are crucial mediators in kidney fibrosis through production of extracellular matrix (ECM), but their origin has not been clearly identified. Many study proposed that epithelial and endothelial cells become myofibroblasts by epithelial dedifferentiation and endothelial-mesenchymal transition (EndoMT). TGF-ß1/Smad signaling plays a crucial role in partly epithelial-mensencymal transition (EMT) and EndoMT. Thus, we designed the TGF-ß1/Smad oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequence for Smad transcription factor and TGF-ß1 mRNA. Therefore, this study investigated the anti-fibrotic effect of synthetic TGF-ß1/Smad ODN on UUO-induced kidney fibrosis in vivo model and TGF-ß1-induced in vitro model. To examine the effect of TGF-ß1/Smad ODN, we performed various experiments to evaluate kidney fibrosis. The results showed that UUO induced inflammation, ECM accumulation, epithelial dedifferentiation and EndoMT processes, and tubular atrophy. However, synthetic TGF-ß1/Smad ODN significantly suppressed UUO-induced fibrosis. Furthermore, synthetic ODN attenuated TGF-ß1-induced epithelial dedifferentiation and EndoMT program via blocking TGF-ß1/Smad signaling. In conclusion, this study demonstrated that administration of synthetic TGF-ß1/Smad ODN attenuates kidney fibrosis, epithelial dedifferentiation, and EndoMT processes. The findings propose the possibility of synthetic ODN as a new effective therapeutic tool for kidney fibrosis.


Assuntos
Desdiferenciação Celular , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/genética , Animais , Células Epiteliais/metabolismo , Fibrose/genética , Fibrose/patologia , Técnicas In Vitro , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/prevenção & controle
16.
Am J Emerg Med ; 44: 213-219, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32291162

RESUMO

BACKGROUND: Neighborhood stress score (NSS) and area deprivation index (ADI) are two neighborhood-based composite measures used to quantify an individual's socioeconomic risk based on home location. In this analysis, we compare the relationships between an individual's socioeconomic risk, based on each of these measures, and potentially preventable acute care utilization. METHODS: Using emergency department (ED) visit data from two academic medical centers in Boston, Massachusetts, we conducted adjusted Poisson regressions of ADI decile and NSS decile with counts of low acuity ED visits, admissions for ambulatory care sensitive conditions (ACSCs), and patients with high frequency ED utilization at the census block group (CBG) level within the greater Boston area. RESULTS: Both NSS and ADI decile were associated with elevated rates of utilization, although the associated incidence rate ratios (IRRs) for NSS were higher than those for ADI across all three measures. NSS decile was associated with IRRs of 1.11 [95% CI: 1.10-1.12], 1.16 [1.14-1.17], and 1.22 [1.19-1.25] for ACSC admissions, low acuity ED visits, and patients with high frequency ED utilization, respectively; compared with 1.04 [1.04-1.05], 1.11 [1.10-1.11], and 1.10 [1.08-1.12] for ADI decile. CONCLUSION: ADI and NSS both represent effective tools to assess the potential impact of geographically-linked socioeconomic drivers of health on potentially preventable acute care utilization. NSS decile was associated with a greater effect size for each measure of utilization suggesting that this may be a stronger predictor, however, additional research is necessary to evaluate these findings in other contexts.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Características de Residência , Adulto , Idoso , Boston , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos
17.
J Korean Med Sci ; 36(50): e346, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34962117

RESUMO

In November 2021, 14 international travel-related severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant of concern (VOC) patients were detected in South Korea. Epidemiologic investigation revealed community transmission of the omicron VOC. A total of 80 SARS-CoV-2 omicron VOC-positive patients were identified until December 10, 2021 and 66 of them reported no relation to the international travel. There may be more transmissions with this VOC in Korea than reported.


Assuntos
COVID-19/transmissão , SARS-CoV-2 , Doença Relacionada a Viagens , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Adulto Jovem
18.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361019

RESUMO

Cholestatic liver diseases can progress to end-stage liver disease and reduce patients' quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-ß pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Colestase Intra-Hepática/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Protoporfirinas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose , Colestase Intra-Hepática/etiologia , Colestase Intra-Hepática/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Protoporfirinas/farmacologia , Piridinas/toxicidade , Xenobióticos/toxicidade
19.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946671

RESUMO

Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI.


Assuntos
Abietanos/farmacologia , Injúria Renal Aguda , Lipopolissacarídeos/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Masculino , Camundongos
20.
J Am Chem Soc ; 142(5): 2277-2284, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31917919

RESUMO

Unique folded structures of natural and synthetic oligomers are the most fundamental basis for their unique functions. N-Substituted ß-peptides, or ß-peptoids, are synthetic oligomers with great potential to fold into diverse three-dimensional structures because of the existence of four rotatable bonds in a monomer with highly modular synthetic accessibility. However, the existence of the four rotatable bonds poses a challenge for conformational control of ß-peptoids. Here, we report a strategy for per-residue programming of two dihedral angles of ß-peptoids, which is useful for restricting the conformational space of the oligomers. The oligomer was found to form a unique loop conformation that is stabilized by the backbone rotational restrictions. Circular dichroism and NMR spectroscopic analyses and X-ray crystallographic analysis of the oligomer are presented. The strategy would significantly facilitate the discovery of many more unique folded structures of ß-peptoids.


Assuntos
Peptoides/química , Dicroísmo Circular , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA