Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 34(12): 3200-3210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779813

RESUMO

Rosa rugosa Thunb., is as a medicinal plant known for anti-diabetic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of in R. rugosa extract (95% EtOH) remain unknown. Here, we hypothesized that terpenoid structure, the most abundant constituents in R. rugosa extract, are responsible for its anti-inflammatory activity. We investigated the phytochemical substituents (compounds 1-13) and newly purified 11-methoxy polisin A, and 13-methoxy bisaborosaol F using NMR and ESI-MS and to screened their effects on NO production in LPS-induced macrophages. Rugosic acid A (RA) induced to ameliorate NO production, iNOS, and pro-inflammatory cytokines associated with the NF-κB. And, RA suppressed IL-6 secretion and IL-6-mediated STAT3 activation in LPS-mediated inflammation. In addition, RA was evaluated in LPS-mediated acute lung injury (ALI) model similar to acute pneumonia. Our results suggested that RA was suppressed to translocate nuclear NF-κB and IL-6-mediated STAT3 activation. Finally, RA led to amelioration of ALI by decreasing myeloperoxidase (MPO) and inhibiting phosphorylation of NF-κB and STAT3. Our group originally found that R. rugosa extract had new methoxy compounds and RA may be alternative natural agent for acute pneumonia similar to severe acute respiratory syndrome by coronavirus.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Interleucina-6/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Rosa , Fator de Transcrição STAT3/antagonistas & inibidores , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos , Camundongos Endogâmicos BALB C
2.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126070

RESUMO

A correlation between gastrointestinal (GI) inflammation and gut hormones has reported that inflammatory stimuli including bacterial endotoxins, lipopolysaccharides (LPS), TNFα, IL-1ß, and IL-6 induces high levels of incretin hormone leading to glucose dysregulation. Although incretin hormones are immediately secreted in response to environmental stimuli, such as nutrients, cytokines, and LPS, but studies of glucose-induced incretin secretion in an inflamed state are limited. We hypothesized that GI inflammatory conditions induce over-stimulated incretin secretion via an increase of glucose-sensing receptors. To confirm our hypothesis, we observed the alteration of glucose-induced incretin secretion and glucose-sensing receptors in a GI inflammatory mouse model, and we treated a conditioned media (Mϕ 30%) containing inflammatory cytokines in intestinal epithelium cells and enteroendocrine L-like NCI-H716 cells. In GI-inflamed mice, we observed that over-stimulated incretin secretion and insulin release in response to glucose and sodium glucose cotransporter (Sglt1) was increased. Incubation with Mϕ 30% increases Sglt1 and induces glucose-induced GLP-1 secretion with increasing intracellular calcium influx. Phloridzin, an sglt1 inhibitor, inhibits glucose-induced GLP-1 secretion, ERK activation, and calcium influx. These findings suggest that the abnormalities of incretin secretion leading to metabolic disturbances in GI inflammatory disease by an increase of Sglt1.


Assuntos
Gastroenterite/imunologia , Glucose/imunologia , Insulina/imunologia , Transportador 1 de Glucose-Sódio/imunologia , Animais , Linhagem Celular , Células Cultivadas , Feminino , Polipeptídeo Inibidor Gástrico/imunologia , Gastroenterite/patologia , Peptídeo 1 Semelhante ao Glucagon/imunologia , Incretinas/imunologia , Inflamação/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL
3.
Molecules ; 24(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703464

RESUMO

Portulaca oleracea is as a medicinal plant known for its neuroprotective, hepatoprotective, antidiabetic, antioxidant, anticancer, antimicrobial, antiulcerogenic, and anti-inflammatory activities. However, the specific active compounds responsible for the individual pharmacological effects of P. oleracea extract (95% EtOH) remain unknown. Here, we hypothesized that alkaloids, the most abundant constituents in P. oleracea extract, are responsible for its anti-inflammatory activity. We investigated the phytochemical substituents (compounds 1-22) using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) and screened their effects on NO production in lipopolysaccharide (LPS)-induced macrophages. Compound 20, 1-carbomethoxy-ß-carboline, as an alkaloid structure, ameliorated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and proinflammatory cytokines associated with the mitogen-activated protein kinase (MAPK) pathways, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Subsequently, we observed that compound 20 suppressed nuclear translocation of nuclear factor κB (NF-κB) using immunocytochemistry. Moreover, we recently reported that compound 8, trans-N-feruloyl-3', 7'-dimethoxytyramine, was originally purified from P. oleracea extracts. Our results suggest that 1-carbomethoxy-ß-carboline, the most effective anti-inflammatory agent among alkaloids in the 95% EtOH extract of P. oleracea, was suppressing the MAPK pathway and nuclear translocation of NF-κB. Therefore, P. oleracea extracts and specifically 1-carbomethoxy-ß-carboline may be novel therapeutic candidates for the treatment of inflammatory diseases associated with the activation of MAPKs and NF-κB.


Assuntos
Anti-Inflamatórios , Carbolinas , Núcleo Celular/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Portulaca/química , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Carbolinas/química , Carbolinas/isolamento & purificação , Carbolinas/farmacologia , Núcleo Celular/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase 4/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Immunopharmacol Immunotoxicol ; 40(1): 83-90, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29299941

RESUMO

OBJECTIVE: Allergic asthma is the most common type in asthma, which is defined as a chronic inflammatory disease of the lung. In this study, we investigated whether embelin (Emb), the major component of Ardisia japonica BL. (AJB), exhibits anti-inflammatory effects on allergic asthma via inhibition of NF-κB activity using A549 cells and asthmatic airway epithelial tissues. METHODS: Inflammation was induced in A549 cells, a human airway epithelial cell line, by IL-1ß (10 ng/ml) treatment for 4 h. The effects of Emb on NF-κB activity and COX-2 protein expression in inflamed airway epithelial cells and human asthmatic airway epithelial tissues were analyzed via western blot. The secretion levels of NF-κB-mediated cytokines/chemokines, including IL-4, 6, 9, 13, TNF-α and eotaxin, were measured by a multiplex assay. RESULTS: Emb significantly blocked NF-κB activity in IL-1ß-treated A549 cells and human asthmatic airway epithelial tissues. COX-2 expression was also reduced in both IL-1ß-treated A549 cells and asthmatic tissues Emb application. Emb significantly reduced the secretion of IL-4, IL-6 and eotaxin in human asthmatic airway epithelial tissues by inhibiting activity of NF-κB. CONCLUSIONS: The results of this study suggest that Emb may be used as an anti-inflammatory agent via inhibition of NF-κB and related cytokines.


Assuntos
Anti-Inflamatórios/farmacologia , Asma/imunologia , Benzoquinonas/farmacologia , Citocinas/imunologia , Mucosa Respiratória/imunologia , Células A549 , Asma/tratamento farmacológico , Asma/patologia , Ciclo-Oxigenase 2/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/imunologia , Humanos , NF-kappa B/imunologia , Mucosa Respiratória/patologia
5.
BMC Complement Altern Med ; 16: 239, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27456850

RESUMO

BACKGROUND: Liver steatosis was caused by lipid accumulation in the liver. Alisma orientale (AO) is recognized as a promising candidate with therapeutic efficacy for the treatment of nonalcoholic fatty liver disease (NAFLD). HepG2 hepatocyte cell line is commonly used for liver disease cell model. METHOD: The HepG2 cells were cultured with the NEFAs mixture (oleic and palmitic acids, 2:1 ratio) for 24 h to induce hepatic steatosis. Then different doses of Alisma orientale extract (AOE) was treated to HepG2 for 24 h. Incubated cells were used for further experiments. RESULTS: The AOE showed inhibitory effects on lipid accumulation in the Oil Red O staining and Nile red staining tests with no cytotoxicity at a concentration of 300 µg/mL. Fatty acid synthase (FASN) and acetyl-CoA carboxylase 1 (ACC1) mRNA and protein expression level were down-regulated after AOE treatment. Bcl-2 associated X protein (Bax) and c-Jun N-terminal kinase (JNK) mRNA expression level were decreased as well as p-JNK (activated form of JNK), Bax, cleaved caspase-9, caspase-3 protein expression level. Anti-apopototic B-cell lymphoma 2 (Bcl-2) protein level increased after AOE treatment. In addition, inflammatory protein expression including p-p65, p65, COX-2 and iNOS were inhibited by AOE treatment. CONCLUSION: The results suggest that AOE has anti-steatosis effects that involve lipogenesis, anti-lipoapoptosis, and anti-inflammation in the NEFA-induced NAFLD pathological cell model.


Assuntos
Alisma/química , Apoptose/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lipogênese/genética , Extratos Vegetais/química
6.
Biochem Biophys Res Commun ; 468(1-2): 306-11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505793

RESUMO

Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic ß cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor type 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells.


Assuntos
Células Enteroendócrinas/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fenantrolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular , Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/análise , Humanos , Íleo/efeitos dos fármacos , Íleo/metabolismo , Receptores Acoplados a Proteínas G/análise
7.
Phytother Res ; 29(8): 1251-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26014513

RESUMO

Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway.


Assuntos
Quimiocina CXCL12/metabolismo , Queratinas/metabolismo , Morus/química , Extratos Vegetais/farmacologia , Receptores CXCR4/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Técnicas In Vitro , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos Endogâmicos ICR , Raízes de Plantas/química , Cultura Primária de Células , RNA Mensageiro/metabolismo , Transdução de Sinais , Pele/citologia , Pele/efeitos dos fármacos , Transcriptoma , Regulação para Cima
8.
J Phys Ther Sci ; 25(7): 789-91, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24259854

RESUMO

[Purpose] The purpose of this study was to examine the effects of smoking on teenagers' internal oblique (IO) and transverses abdominis (TrA) expiratory muscles and their pulmonary function. [Subjects] A total of 30 healthy teenagers (15 smokers; 15 nonsmokers) voluntarily participated in the study. [Methods] The subjects were instructed to maintain an upright standing posture with their scapulars against the wall. Measurements were then taken to determine the thickness of their right IO and their right TrA while they were at rest and in a state of forced expiration using a 7.5 MHz linear probe of an ultrasonic imaging system. The measured thickness was converted into the percentage of change in muscle thickness (PCMT) and the relative contribution ratio (RCR) using a calculation formula, and then the data were analyzed. [Results] No significant differences were found between the two groups in the thickness, PCMT, and RCR of both the IO and TrA muscles, while there were significant differences in the forced expiratory volume at one second (FEV1) and the peak expiratory flow (PEF). [Conclusion] This study examined teenage smokers whose duration of smoking was relatively short. The two groups did not show significant differences in the thickness of both the IO and TrA muscles. However, based on the forced expiratory volume at one second (FEV1) and PEF measurements, the smokers showed greater decreases in pulmonary function than the nonsmokers.

9.
J Phys Ther Sci ; 25(7): 861-3, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24259871

RESUMO

The purpose of the present study was to compare the contraction ability at maximum expiration of the transversus abdominis (TrA) in patients with chronic low-back pain (CLBP) with that of healthy individuals. [Subjects] We studied 15 patients with CLBP and 15 healthy subjects. The subjects were informed of the study's aim and methods, and the experiment was performed after obtaining the consent of the subjects. [Methods] The thickness of the abdominal muscles was measured using a LOGIQ Book XP (GE, USA). The main outcome variable was the ratio of TrA thickness at maximum expiration versus in the relaxed position (TrA activation ratio). [Results] There was a difference between the healthy subjects and the back pain subjects with regard to the thickness of the TrA at rest and the thickness of the muscle during contraction. However, there was no difference in the rate of change in the muscle activity. [Conclusion] In conclusion, CLBP patients exhibited atrophy of the TrA muscle, but voluntary TrA muscle activation was similar to that of the normal subjects.

10.
J Phys Ther Sci ; 25(8): 907-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24259882

RESUMO

[Purpose] This study examined the contraction rates of abdominal muscles in relation to the posture of chronic lumbar pain patients and normal subjects. [Subjects] The subjects were 17 chronic low back pain (CLBP) patients and 17 normal people between the ages of 20 and 59. [Methods] Experimental postures included a supine position, a sitting position, and a standing position. Measurements were taken at rest and during abdominal contraction. The measurement at rest was taken during expiration with comfortable breathing, and the measurement during contraction was taken at maximum expiration of forced expiration. Muscle contraction rates (on contraction and at relaxation) were calculated. [Results] There were significant differences between CLBP patients and normal subjects in the transversus abdominis (TrA) in the standing position. [Conclusion] Changes in contraction rates of the abdominal muscles of normal subjects and CLBP patients were examined in different postures at maximum expiration. It was found that the contraction rate of TrA in CLBP patients in a standing position, is significantly lower than that of normal subjects.

11.
J Colloid Interface Sci ; 649: 132-139, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348332

RESUMO

Quantum-dot (QDs) polymer composite films, which are key components in recent display applications, require improved photoluminescence (PL) intensity and color conversion efficiency for better display quality and low power consumption. In this study, we developed a novel approach to improve the photoluminescence (PL) of quantum dot (QDs)-polymer nanocomposite films. This was achieved by incorporating CO2 micropores and scattering particles into QD-embedded photopolymerizable polymer films. CO2 micropores were generated by the decomposition of KHCO3 in the film. The CO2 micropores, along with the partially decomposed KHCO3 microparticles, act as a scattering medium that increases the photon absorbance and improves the PL intensity. The effect of KHCO3 annealing temperature on various optical properties is investigated, and it is found that a large number of uniform micropores are created in the film at an optimal temperature, 110 ℃. Compared to an ordinary QD-polymer film, the PL of the QD-hybrid-foamed polymer film increases by 4.2 times. This method is fast and economically efficient, and provides insights into the design of high-performance optoelectronic devices.

12.
ACS Nano ; 17(11): 9919-9937, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37204291

RESUMO

To understand how the molecular machinery of synapses works, it is essential to determine an inventory of synaptic proteins at a subsynaptic resolution. Nevertheless, synaptic proteins are difficult to localize because of the low expression levels and limited access to immunostaining epitopes. Here, we report on the exTEM (epitope-exposed by expansion-transmission electron microscopy) method that enables the imaging of synaptic proteins in situ. This method combines TEM with nanoscale resolution and expandable tissue-hydrogel hybrids for enhanced immunolabeling with better epitope accessibility via molecular decrowding, allowing successful probing of the distribution of various synapse-organizing proteins. We propose that exTEM can be employed for studying the mechanisms underlying the regulation of synaptic architecture and function by providing nanoscale molecular distribution of synaptic proteins in situ. We also envision that exTEM is widely applicable for investigating protein nanostructures located in densely packed environments by immunostaining of commercially available antibodies at nanometer resolution.


Assuntos
Sinapses , Expansão de Tecido , Sinapses/fisiologia
13.
Biomedicines ; 9(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922346

RESUMO

Injured tissue triggers complex interactions through biological process associated with keratins. Rapid recovery is most important for protection against secondary infection and inflammatory pain. For rapid wound healing with minimal pain and side effects, shilajit has been used as an ayurvedic medicine. However, the mechanisms of rapid wound closure are unknown. Here, we found that shilajit induced wound closure in an acute wound model and induced migration in skin explant cultures through evaluation of transcriptomics via microarray testing. In addition, ferulic acid (FA), as a bioactive compound, induced migration via modulation of keratin 6α (K6α) and inhibition of ß-catenin in primary keratinocytes of skin explant culture and injured full-thickness skin, because accumulation of ß-catenin into the nucleus acts as a negative regulator and disturbs migration in human epidermal keratinocytes. Furthermore, FA alleviated wound-induced inflammation via activation of nuclear factor erythroid-2-related factor 2 (Nrf2) at the wound edge. These findings show that FA is a novel therapeutic agent for wound healing that acts via inhibition of ß-catenin in keratinocytes and by activation of Nrf2 in wound-induced inflammation.

14.
J Microbiol Biotechnol ; 30(5): 700-707, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32482935

RESUMO

The root-knot nematode (Meloidogyne incognita) is an important pathogen in crop cultivation, however, few methods are available to control this parasitic roundworm. In this study, the nematicidal effects of approximately 30 Streptomyces strains isolated from soil samples of Mt. Naejang (Korea) were tested against Meloidogyne incognita, and the culture broth of the strains KRA- 24 and KRA-28 exhibited approximately 75% and 85% insecticidal activity, respectively, in in vitro assays. In in vivo pot experiments, these strains reduced the number of nematodes in the soil and the number of egg masses in the roots of red peppers. The two strains also survived in the presence of insecticidal agents (0.1 to 3.0%) such as fosthiazate, ethoprophos and terbufos when they were used in parallel. The mixture of KRA-24 or KRA-28 culture broth and fosthiazate exhibited nematicidal effects that were similar to those observed when KRA-24 or KRA-28 were used alone. Our results clearly suggest that the Streptomyces strains KRA-24 and KRA-28 should be promoted as a biocontrol agent against Meloidogyne incognita.


Assuntos
Antinematódeos/farmacologia , Agentes de Controle Biológico/farmacologia , Streptomyces/química , Tylenchoidea/efeitos dos fármacos , Animais , Antinematódeos/toxicidade , Agentes de Controle Biológico/toxicidade , Capsicum/efeitos dos fármacos , Capsicum/parasitologia , Microbiologia do Solo
15.
J Immunol Res ; 2020: 7207354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802895

RESUMO

Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1-17, including undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic data. To investigate the anti-inflammatory activity of compounds 1-17, nitric oxide (NO) secretion was evaluated in LPS-treated murine macrophages, RAW264.7 cells. Among compounds 1-17, deoxynimbidiol (1) and new trinorditerpenoid (3) showed the most potent inhibitory effects (IC50: 4.9 and 12.6 µM, respectively) on lipopolysaccharide- (LPS-) stimulated NO releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be considered a potential candidate for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Celastrus/química , Diterpenos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Diterpenos/química , Diterpenos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7
16.
Phytomedicine ; 56: 48-56, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668353

RESUMO

BACKGROUND: Timosaponin A3 (TA3), one of the active components of spirostanol saponin isolated from A. asphodeloides, is widely used as an anticancer agent in a variety of cancer cell lines. However, the research on the anticancer efficacy is very limited in human pancreatic cancer models. PURPOSE: In this study, we investigated the molecular targets in the active components of A. asphodeloides, which showed anti-cancer effects in human pancreatic cancer cells, and confirmed the pathways involved. STUDY DESIGN: The apoptotic effects of five solvent extracts of A. asphodeloides in human pancreatic cancer cells (AsPC-1) was studied, and the phytochemical leading to their effects identified. Next, we determined whether the phytochemical inhibit STAT3 and ERK1/2, and investigated the pathways involved. METHODS: Five solvent extracts of A. asphodeloides (100  µg/ml, 24  h) was investigated for their cytotoxicity against AsPC-1 cells. The active ingredient of the extract exhibiting the highest toxicity were analyzed by liquid chromatography-mass spectrometry. Next, we studied the mechanism of action of the phytochemical in pancreatic cancer. Cell cycle and annexin V/FITC assays were performed to assess cell growth and apoptosis capacity. The effects on apoptosis and proliferation-related pathways, STAT3, and MAPKs were confirmed at the protein level using immunoblotting. The factors regulated in the pathways were investigated using reverse transcription polymerase chain reaction. RESULTS: The results showed that the ethyl acetate extract of A. asphodeloides (EAA) induced apoptotic and anti-proliferative activities through the STAT3 and MAPKs pathways. We found that TA3, an active component of EAA, inhibits constitutive STAT3 and ERK1/2 proteins. EAA and TA3 decreased the viability of AsPC-1 cells, leading to cell cycle arrest at the sub-G1 and G2/M phases. Moreover, TA3 inhibited the expression of various genes encoding anti-apoptotic (Bcl-2, Bcl-xl), proliferative (Cyclin D1), metastatic (MMP-9), and angiogenic (VEGF-1) proteins. CONCLUSION: The results indicated that TA3, an active phytochemical from A. asphodeloides, could induce apoptosis and suppress cell proliferation by inhibiting the STAT3 and ERK1/2 pathways. Thus, TA3 is a candidate cancer chemotherapeutic agent instead to treat human pancreatic cancer.


Assuntos
Anemarrhena/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Saponinas/farmacologia , Esteroides/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo
17.
ACS Appl Mater Interfaces ; 11(27): 23926-23937, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31251556

RESUMO

Silencing of aberrantly expressed microRNAs (miRNAs or miRs) has emerged as one of the strategies for molecular targeted cancer therapeutics. In particular, miR-21 is an oncogenic miRNA overexpressed in many tumors, including ovarian cancer. To achieve efficient administration of anti-miR therapeutics, delivery systems are needed that can ensure local accumulation in the tumor environment, low systemic toxicity, and reduced adverse side effects. In order to develop an improved anti-miR therapeutic agent for the treatment of ovarian cancer, a nanoformulation is engineered that leverages biodegradable porous silicon nanoparticles (pSiNPs) encapsulating an anti-miR-21 locked nucleic acid payload and displaying a tumor-homing peptide for targeted distribution. Targeting efficacy, miR-21 silencing, and anticancer activity are optimized in vitro on a panel of ovarian cancer cell lines, and a formulation of anti-miR-21 in a pSiNP displaying the targeting peptide CGKRK is identified for in vivo evaluation. When this nanoparticulate agent is delivered to mice bearing tumor xenografts, a substantial inhibition of tumor growth is achieved through silencing of miR-21. This study presents the first successful application of tumor-targeted anti-miR porous silicon nanoparticles for the treatment of ovarian cancer in a mouse xenograft model.


Assuntos
Portadores de Fármacos , MicroRNAs , Nanopartículas , Neoplasias Ovarianas , Silício , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Porosidade , Silício/química , Silício/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Pharmacol ; 9: 1071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298009

RESUMO

Taste receptors exist in several organs from tongue to colon and have diverse functions dependent on specific cell type. In enteroendocrine L-cells, stimulation of taste receptor signaling induces incretin hormones. Among incretin hormones, glucagon-like peptide-1 (GLP-1) induces insulinotropic action by activating GLP-1 receptor of pancreatic ß-cells. However, GLP-1 mimetic medicines have reported clinical side effects, such as autoimmune hepatitis, acute kidney injury, pancreatitis, and pancreatic cancer. Here, we hypothesized that if natural components in ethnomedicines can activate agonistic action of taste receptor; they may stimulate GLP-1 and therefore, could be developed as safe and applicable medicines to type 2 diabetes mellitus (T2DM) with minimal side effects. Cucurbitacin B (CuB) is composed of triterpenoid structure and its structural character, that represents bitterness, can stimulate AMP-activated protein kinase (AMPK) pathway. CuB ameliorated hyperglycemia by activating intestinal AMPK levels and by inducing plasma GLP-1 and insulin release in diabetic mice. This hypoglycemic action was decreased in dorsomorphin-injected mice and α-gustducin null mice. Moreover, systemic inhibition study in differentiated NCI-H716 cell line showed that CuB-mediated GLP-1 secretion was involved in activation of AMPK through α-gustducin and Gßγ-signaling of taste receptors. In summary, we conclude that, CuB represents novel hypoglycemic agents by activation of AMPK and stimulation of GLP-1 in differentiated enteroendocrine L-cells. These results suggest that taste receptor signaling-based therapeutic agents within tremendously diverse ethnomedicines, could be applied to developing therapeutics for T2DM patients.

19.
Biomed Pharmacother ; 94: 244-255, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28763748

RESUMO

Autoimmune hepatitis (AIH) is an immunity disorder that is the result of antibodies in the liver tissue of the patient that are attacked by activated immune cells due to an unknown cause. In this study, we aimed to investigate the anti-inflammatory effect of Yongdamsagan-tang (YST) extracts and confirm effects on autoimmune hepatitis models as the therapeutic agent using the YST extracted by various solvents. YST, a mixture of 11 herbal extracts, is known in traditional Korean medicine as a widely used treatment for inflammatory diseases. We proposed the AIH-condition in vitro model by the addition of recombinant IL-17A and then observed several markers linked to AIH symptoms, including an increase of IL-6 expression, lipid accumulation, and fibrosis. In AIH-condition hepatic cell model, YST reduced IL-6 expression and lipid accumulation caused by treatment of IL-17 combination in hepatocyte cells. Also, YST blocked several activated fibrosis factors including transforming growth factor-ß (TGF- ß1), collagen type 1 (Col-α1(I)), and α-smooth muscle actin (α-SMA) in liver stellate cells. Furthermore, pretreatment with YST protected hepatic damage and reduces histological injury by suppressing apoptosis mediator and inflammatory cytokines expression in concanavalin A (Con A)-induced autoimmune hepatitis mice model. The findings here improve our understanding of YST extracted by 80% ethanol, suggesting that YST can be used as a therapeutic treatment for AIH.


Assuntos
Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatite Autoimune/tratamento farmacológico , Animais , Apoptose/imunologia , Sobrevivência Celular/efeitos dos fármacos , Concanavalina A/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/toxicidade , Fibrose , Células Hep G2 , Hepatite Autoimune/imunologia , Hepatite Autoimune/patologia , Humanos , Interleucina-17/imunologia , Interleucina-6/biossíntese , Testes de Função Hepática , Macrófagos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Proteínas Recombinantes
20.
Sci Rep ; 7(1): 13978, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070885

RESUMO

Odorants are non-nutrients. However, they exist abundantly in foods, wines, and teas, and thus can be ingested along with the other nutrients during a meal. Here, we have focused on the chemical-recognition ability of these ORs and hypothesized that the odorants ingested during a meal may play a physiological role by activating the gut-expressed ORs. Using a human-derived enteroendocrine L cell line, we discovered the geraniol- and citronellal-mediated stimulation of glucagon-like peptide-1 (GLP-1) secretion and elucidated the corresponding cellular downstream signaling pathways. The geraniol-stimulated GLP-1 secretion event in the enteroendocrine cell line was mediated by the olfactory-type G protein, the activation of adenylyl cyclase, increased intracellular cAMP levels, and extracellular calcium influx. TaqMan qPCR demonstrated that two ORs corresponding to geraniol and citronellal were expressed in the human enteroendocrine cell line and in mouse intestinal specimen. In a type 2 diabetes mellitus mouse model (db/db), oral administration of geraniol improved glucose homeostasis by increasing plasma GLP-1 and insulin levels. This insulinotropic action of geraniol was GLP-1 receptor-mediated, and also was glucose-dependent. This study demonstrates that odor compounds can be recognized by gut-expressed ORs during meal ingestion and therefore, participate in the glucose homeostasis by inducing the secretion of gut-peptides.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hiperglicemia/prevenção & controle , Mucosa Intestinal/metabolismo , Receptores Odorantes/metabolismo , Animais , Glicemia/metabolismo , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Odorantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA