Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.516
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(4): 858-68, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813609

RESUMO

The circadian nature of mood and its dysfunction in affective disorders is well recognized, but the underlying molecular mechanisms are still unclear. Here, we show that the circadian nuclear receptor REV-ERBα, which is associated with bipolar disorder, impacts midbrain dopamine production and mood-related behavior in mice. Genetic deletion of the Rev-erbα gene or pharmacological inhibition of REV-ERBα activity in the ventral midbrain induced mania-like behavior in association with a central hyperdopaminergic state. Also, REV-ERBα repressed tyrosine hydroxylase (TH) gene transcription via competition with nuclear receptor-related 1 protein (NURR1), another nuclear receptor crucial for dopaminergic neuronal function, thereby driving circadian TH expression through a target-dependent antagonistic mechanism. In conclusion, we identified a molecular connection between the circadian timing system and mood regulation, suggesting that REV-ERBα could be targeting in the treatment of circadian rhythm-related affective disorders.


Assuntos
Afeto , Ritmo Circadiano , Dopamina/metabolismo , Mesencéfalo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Transtorno Bipolar/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Humor/genética , Transtornos do Humor/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Transcrição Gênica , Tirosina 3-Mono-Oxigenase/genética
2.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
3.
Trends Genet ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906738

RESUMO

Cell-cell interactions orchestrate complex functions in multicellular organisms, forming a regulatory network for diverse biological processes. Their disruption leads to disease states. Recent advancements - including single-cell sequencing and spatial transcriptomics, coupled with powerful bioengineering and molecular tools - have revolutionized our understanding of how cells respond to each other. Notably, spatial transcriptomics allows us to analyze gene expression changes based on cell proximity, offering a unique window into the impact of cell-cell contact. Additionally, computational approaches are being developed to decipher how cell contact governs the symphony of cellular responses. This review explores these cutting-edge approaches, providing valuable insights into deciphering the intricate cellular changes influenced by cell-cell communication.

4.
Nature ; 598(7881): 444-450, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671136

RESUMO

In perovskite solar cells, the interfaces between the perovskite and charge-transporting layers contain high concentrations of defects (about 100 times that within the perovskite layer), specifically, deep-level defects, which substantially reduce the power conversion efficiency of the devices1-3. Recent efforts to reduce these interfacial defects have focused mainly on surface passivation4-6. However, passivating the perovskite surface that interfaces with the electron-transporting layer is difficult, because the surface-treatment agents on the electron-transporting layer may dissolve while coating the perovskite thin film. Alternatively, interfacial defects may not be a concern if a coherent interface could be formed between the electron-transporting and perovskite layers. Here we report the formation of an interlayer between a SnO2 electron-transporting layer and a halide perovskite light-absorbing layer, achieved by coupling Cl-bonded SnO2 with a Cl-containing perovskite precursor. This interlayer has atomically coherent features, which enhance charge extraction and transport from the perovskite layer, and fewer interfacial defects. The existence of such a coherent interlayer allowed us to fabricate perovskite solar cells with a power conversion efficiency of 25.8 per cent (certified 25.5 per cent)under standard illumination. Furthermore, unencapsulated devices maintained about 90 per cent of their initial efficiency even after continuous light exposure for 500 hours. Our findings provide guidelines for designing defect-minimizing interfaces between metal halide perovskites and electron-transporting layers.

5.
Nature ; 592(7852): 54-59, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790446

RESUMO

Three-dimensional (3D) printing1-9 has revolutionized manufacturing processes for electronics10-12, optics13-15, energy16,17, robotics18, bioengineering19-21 and sensing22. Downscaling 3D printing23 will enable applications that take advantage of the properties of micro- and nanostructures24,25. However, existing techniques for 3D nanoprinting of metals require a polymer-metal mixture, metallic salts or rheological inks, limiting the choice of material and the purity of the resulting structures. Aerosol lithography has previously been used to assemble arrays of high-purity 3D metal nanostructures on a prepatterned substrate26,27, but in limited geometries26-30. Here we introduce a technique for direct 3D printing of arrays of metal nanostructures with flexible geometry and feature sizes down to hundreds of nanometres, using various materials. The printing process occurs in a dry atmosphere, without the need for polymers or inks. Instead, ions and charged aerosol particles are directed onto a dielectric mask containing an array of holes that floats over a biased silicon substrate. The ions accumulate around each hole, generating electrostatic lenses that focus the charged aerosol particles into nanoscale jets. These jets are guided by converged electric-field lines that form under the hole-containing mask, which acts similarly to the nozzle of a conventional 3D printer, enabling 3D printing of aerosol particles onto the silicon substrate. By moving the substrate during printing, we successfully print various 3D structures, including helices, overhanging nanopillars, rings and letters. In addition, to demonstrate the potential applications of our technique, we printed an array of vertical split-ring resonator structures. In combination with other 3D-printing methods, we expect our 3D-nanoprinting technique to enable substantial advances in nanofabrication.

6.
Proc Natl Acad Sci U S A ; 121(14): e2318039121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536750

RESUMO

Melanosomes are specific organelles dedicated to melanin synthesis and accumulation in melanocytes. Autophagy is suggestively involved in melanosome degradation, although the potential underlying molecular mechanisms remain elusive. In selective autophagy, autophagy receptors and E3-ligases are the key factors conferring cargo selectivity. In B16F10 cells, ß-mangostin efficiently induced melanosome degradation without affecting other organelles such as mitochondria, peroxisomes, and the endoplasmic reticulum. Among various autophagy receptors, optineurin (OPTN) contributes TANK-binding kinase 1 (TBK1)-dependently to melanosome degradation and its knockdown inhibited ß-mangostin-mediated melanosome degradation. OPTN translocation to melanosomes was dependent on its ubiquitin-binding domain. Moreover, OPTN-mediated TBK1 activation and subsequent TBK1-mediated S187 OPTN phosphorylation were essential for melanosome degradation. ß-mangostin increased K63-linked melanosome ubiquitination. Finally, the E3-ligase RCHY1 knockdown inhibited the melanosome ubiquitination required for OPTN- and TBK1-phosphorylation as well as melanosome degradation. This study suggests that melanophagy, melanosome-selective autophagy, contributes to melanosome degradation, and OPTN and RCHY1 are an essential autophagy receptor and a E3-ligase, respectively, conferring cargo selectivity in melanophagy.


Assuntos
Autofagia , Melanossomas , Melanossomas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Xantonas , Melanoma Experimental , Animais , Camundongos
7.
Nat Chem Biol ; 20(2): 221-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884807

RESUMO

Targeting proximity-labeling enzymes to specific cellular locations is a viable strategy for profiling subcellular proteomes. Here, we generated transgenic mice (MAX-Tg) expressing a mitochondrial matrix-targeted ascorbate peroxidase. Comparative analysis of matrix proteomes from the muscle tissues showed differential enrichment of mitochondrial proteins. We found that reticulon 4-interacting protein 1 (RTN4IP1), also known as optic atrophy-10, is enriched in the mitochondrial matrix of muscle tissues and is an NADPH oxidoreductase. Interactome analysis and in vitro enzymatic assays revealed an essential role for RTN4IP1 in coenzyme Q (CoQ) biosynthesis by regulating the O-methylation activity of COQ3. Rtn4ip1-knockout myoblasts had markedly decreased CoQ9 levels and impaired cellular respiration. Furthermore, muscle-specific knockdown of dRtn4ip1 in flies resulted in impaired muscle function, which was reversed by dietary supplementation with soluble CoQ. Collectively, these results demonstrate that RTN4IP1 is a mitochondrial NAD(P)H oxidoreductase essential for supporting mitochondrial respiration activity in the muscle tissue.


Assuntos
Oxirredutases , Ubiquinona , Animais , Camundongos , Drosophila melanogaster , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma , Ubiquinona/metabolismo , Proteínas de Transporte
8.
Immunity ; 47(1): 171-182.e4, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723549

RESUMO

Interleukin-7 (IL-7) availability determines the size and proliferative state of the resting T cell pool. However, the mechanisms that regulate steady-state IL-7 amounts are unclear. Using experimental lymphopenic mouse models and IL-7-induced homeostatic proliferation to measure IL-7 availability in vivo, we found that radioresistant cells were the source of IL-7 for both CD4+ and CD8+ T cells. Hematopoietic lineage cells, although irrelevant as a source of IL-7, were primarily responsible for limiting IL-7 availability via their expression of IL-7R. Unexpectedly, innate lymphoid cells were found to have a potent influence on IL-7 amounts in the primary and secondary lymphoid tissues. These results demonstrate that IL-7 homeostasis is achieved through consumption by multiple subsets of innate and adaptive immune cells.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Interleucina-7/metabolismo , Linfócitos/imunologia , Linfopenia/imunologia , Linfócitos T/fisiologia , Imunidade Adaptativa , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Homeostase , Humanos , Imunidade Inata , Interleucina-7/genética , Interleucina-7/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tolerância a Radiação , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo
9.
Nature ; 586(7829): 385-389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057219

RESUMO

The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots.

10.
Proc Natl Acad Sci U S A ; 120(41): e2305451120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788317

RESUMO

In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multiscale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multiscale models to design pre-emptive interventions against SARS-CoV-2 and other viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Surtos de Doenças/prevenção & controle , Probabilidade
11.
PLoS Pathog ; 19(3): e1011231, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972312

RESUMO

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. We confirmed that all the mutant viruses didn't gain the virus production efficiency without remdesivir treatment. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , RNA Viral , Tratamento Farmacológico da COVID-19 , Antivirais/metabolismo , Sítios de Ligação
12.
Ann Neurol ; 95(6): 1040-1054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520151

RESUMO

OBJECTIVES: Intracerebral hemorrhage (ICH) and cerebral microbleeds (CMB) in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy are more common in East Asian populations than in people of white European ancestry. We hypothesized that the ethnic difference is explained by the East Asian-specific NOTCH3 p.R75P mutation. METHODS: This retrospective observational study included 118 patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in Japanese and Korean cohorts. We investigated whether the p.R75P mutation is associated with symptomatic ICH and multiple CMB (>5) using quasi-Poisson regression models. We predicted the NOTCH3 extracellular domain protein structures in silico and graded NOTCH3 extracellular domain immunostaining in skin vessels of some patients, with subsequent comparisons between p.R75P and other conventional mutations. RESULTS: Among 63 Japanese patients (median age 55 years; 56% men), 15 had a p.R75P mutation, significantly associated with symptomatic ICH (adjusted relative risk 9.56, 95% CI 2.45-37.31), multiple CMB (3.00, 1.34-6.71), and absence of temporopolar lesions (4.91, 2.29-10.52) after adjustment for age, sex, hypertension, and antithrombotics. In the Korean cohort (n = 55; median age 55 years; 51% men), the p.R75P mutation (n = 13) was also associated with symptomatic ICH (8.11, 1.83-35.89), multiple CMB (1.90, 1.01-3.56), and absence of temporopolar lesions (2.32, 1.08-4.97). Structural analysis revealed solvent-exposed free cysteine thiols in conventional mutations, directly causing aggregation, whereas a stereochemically incompatible proline residue structure in p.R75P lowers correct disulfide bond formation probability, indirectly causing aggregation. Pathologically, the p.R75P mutation resulted in less vascular NOTCH3 extracellular domain accumulation than the other conventional mutations. INTERPRETATION: NOTCH3 p.R75P mutation is associated with hemorrhagic presentations, milder temporopolar lesions, and distinct mutant protein structure properties. ANN NEUROL 2024;95:1040-1054.


Assuntos
CADASIL , Hemorragia Cerebral , Mutação , Receptor Notch3 , Humanos , Masculino , Feminino , Receptor Notch3/genética , Pessoa de Meia-Idade , CADASIL/genética , Estudos Retrospectivos , Hemorragia Cerebral/genética , Idoso , Mutação/genética , Adulto , Japão , República da Coreia , Povo Asiático/genética
13.
PLoS Comput Biol ; 20(3): e1011238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466770

RESUMO

Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/genética , DNA Viral/genética , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Fígado/patologia , DNA Circular , Biomarcadores , Antivirais/uso terapêutico
14.
Mol Cell Proteomics ; 22(10): 100637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648026

RESUMO

cAMP response element-binding protein (CREB) regulated transcriptional coactivator 2 (CRTC2) is a critical transcription factor that maintains glucose homeostasis by activating CREB. Energy homeostasis is maintained through multiple pathways; therefore, CRTC2 may interact with other transcription factors, particularly under metabolic stress. CRTC2 liver-specific KO mice were created, and the global proteome, phosphoproteome, and acetylome from liver tissue under high-fat diet conditions were analyzed using liquid chromatography-tandem mass spectrometry and bioinformatics analysis. Differentially regulated proteins (DRPs) were enriched in metabolic pathways, which were subsequently corroborated through animal experiments. The consensus DRPs from these datasets were used as seed proteins to generate a protein-protein interaction network using STRING, and GeneMANIA identified fatty acid synthase as a mutually relevant protein. In an additional local-protein-protein interaction analysis of CRTC2 and fatty acid synthase with DRPs, sterol regulatory element binding transcription factor 1 (SREBF1) was the common mediator. CRTC2-CREB and SREBF1 are transcription factors, and DNA-binding motif analysis showed that multiple CRTC2-CREB-regulated genes possess SREBF1-binding motifs. This indicates the possible induction by the CRTC2-SREBF1 complex, which is validated through luciferase assay. Therefore, the CRTC2-SREBF1 complex potentially modulates the transcription of multiple proteins that fine-tune cellular metabolism under metabolic stress.

15.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277756

RESUMO

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia
16.
Nano Lett ; 24(15): 4633-4640, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38568864

RESUMO

The glycerol oxidation reaction (GOR) run with photoelectrochemical cells (PECs) is one of the most promising ways to upgrade biomass because it is thermodynamically favorable, while irreversible overoxidation leads to unsatisfactory product selectivities. Herein, a tunable one-dimensional nanoconfined environment was introduced into the GOR process, which accelerated mass transfer of glycerol via the microscale fluid effect and changed the main oxidation product from formic acid (FA) to glyceraldehyde (GLD), which led to retention of the heavier multicarbon products. The rate of glycerol diffusion in the nanochannels increased by a factor of 4.92 with decreasing inner diameters. The main product from the PEC-selective oxidation of glycerol changed from the C1 product FA to the C3 product GLD with a great selectivity of 60.7%. This work provides a favorable approach for inhibiting further oxidation of multicarbon products and illustrates the importance of microenvironmental regulation in biomass oxidation.

17.
Nano Lett ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924488

RESUMO

Electrochemical CO2 reduction reaction (eCO2RR) over Cu-based catalysts is a promising approach for efficiently converting CO2 into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCO2RR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCO2RR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCO2RR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu2+ species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH4. Conversely, the mixed Cu0/Cu+ species in high-Cu-containing LDHs derived from the electroreduction during the eCO2RR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCO2RR performance for CH4 and C2+ products, respectively.

18.
Proteomics ; 24(11): e2300062, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829178

RESUMO

Extracellular vesicles (EVs) are membrane-surrounded vesicles released by various cell types into the extracellular microenvironment. Although EVs vary in size, biological function, and components, their importance in cancer progression and the potential use of EV molecular species to serve as novel cancer biomarkers have become increasingly evident. Cancer cells actively release EVs into surrounding tissues, which play vital roles in cancer progression and metastasis, including invasion and immune modulation. EVs released by cancer cells are usually chosen as a gateway in the search for biomarkers for cancer. In this review, we mainly focused on molecular profiling of EV protein constituents from breast cancer, emphasizing mass spectrometry (MS)-based proteomic approaches. To further investigate the potential use of EVs as a source of breast cancer biomarkers, we have discussed the use of these proteins as predictive marker candidates. Besides, we have also summarized the key characteristics of EVs as potential therapeutic targets in breast cancer and provided significant information on their implications in breast cancer development and progression. Information provided in this review may help understand the recent progress in understanding EV biology and their potential role as new noninvasive biomarkers as well as emerging therapeutic opportunities and associated challenges.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Vesículas Extracelulares , Espectrometria de Massas , Proteômica , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Vesículas Extracelulares/metabolismo , Feminino , Espectrometria de Massas/métodos , Proteômica/métodos
19.
EMBO J ; 39(6): e102214, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32030804

RESUMO

Spinal cord microglia contribute to nerve injury-induced neuropathic pain. We have previously demonstrated that toll-like receptor 2 (TLR2) signaling is critical for nerve injury-induced activation of spinal cord microglia, but the responsible endogenous TLR2 agonist has not been identified. Here, we show that nerve injury-induced upregulation of sialyltransferase St3gal2 in sensory neurons leads to an increase in expression of the sialylated glycosphingolipid, GT1b. GT1b ganglioside is axonally transported to the spinal cord dorsal horn and contributes to characteristics of neuropathic pain such as mechanical and thermal hypersensitivity. Spinal cord GT1b functions as an TLR2 agonist and induces proinflammatory microglia activation and central sensitization. Pharmacological inhibition of GT1b synthesis attenuates nerve injury-induced spinal cord microglia activation and pain hypersensitivity. Thus, the St3gal2-GT1b-TLR2 axis may offer a novel therapeutic target for the treatment of neuropathic pain.


Assuntos
Gangliosídeos/metabolismo , Neuralgia/terapia , Traumatismos dos Nervos Periféricos/terapia , Transdução de Sinais , Receptor 2 Toll-Like/agonistas , Animais , Gangliosídeos/antagonistas & inibidores , Regulação da Expressão Gênica , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/etiologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais , Sialiltransferases/genética , Sialiltransferases/metabolismo , Medula Espinal/metabolismo , Receptor 2 Toll-Like/metabolismo
20.
Biochem Biophys Res Commun ; 720: 150098, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38749190

RESUMO

Telomerase reverse transcriptase (TERT) not only upholds telomeric equilibrium but also plays a pivotal role in multiple non-canonical cellular mechanisms, particularly in the context of aging, cancer, and genomic stability. Though depletion of SIRT1 in mouse embryonic fibroblasts has demonstrated telomere shortening, the impact of SIRT1 on enabling TERT to regulate telomeric homeostasis remains enigmatic. Here, we reveal that SIRT1 directly interacts with TERT, and promotes the nuclear localization and stability of TERT. Reverse transcriptase (RT) domain of TERT and N-terminus of SIRT1 mainly participated in their direct interaction. TERT, concomitantly expressed with intact SIRT1, exhibits nuclear localization, whereas TERT co-expressed with N-terminal-deleted SIRT1 remains in the cytosol. Furthermore, overexpression of SIRT1 enhances the nuclear localization and protein stability of TERT, akin to overexpression of deacetylase-inactive SIRT1, whereas N-terminal-deleted SIRT1 has no effect on TERT. These findings suggest a novel regulatory role of SIRT1 for TERT through direct interaction. This interaction provides new insights into the fields of aging, cancer, and genome stability governed by TERT and SIRT1.


Assuntos
Sirtuína 1 , Telomerase , Animais , Humanos , Camundongos , Núcleo Celular/metabolismo , Estabilidade Enzimática , Células HEK293 , Ligação Proteica , Estabilidade Proteica , Sirtuína 1/metabolismo , Sirtuína 1/genética , Telomerase/metabolismo , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA