Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 91: 102985, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37844472

RESUMO

This paper introduces the "SurgT: Surgical Tracking" challenge which was organized in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2022). There were two purposes for the creation of this challenge: (1) the establishment of the first standardized benchmark for the research community to assess soft-tissue trackers; and (2) to encourage the development of unsupervised deep learning methods, given the lack of annotated data in surgery. A dataset of 157 stereo endoscopic videos from 20 clinical cases, along with stereo camera calibration parameters, have been provided. Participants were assigned the task of developing algorithms to track the movement of soft tissues, represented by bounding boxes, in stereo endoscopic videos. At the end of the challenge, the developed methods were assessed on a previously hidden test subset. This assessment uses benchmarking metrics that were purposely developed for this challenge, to verify the efficacy of unsupervised deep learning algorithms in tracking soft-tissue. The metric used for ranking the methods was the Expected Average Overlap (EAO) score, which measures the average overlap between a tracker's and the ground truth bounding boxes. Coming first in the challenge was the deep learning submission by ICVS-2Ai with a superior EAO score of 0.617. This method employs ARFlow to estimate unsupervised dense optical flow from cropped images, using photometric and regularization losses. Second, Jmees with an EAO of 0.583, uses deep learning for surgical tool segmentation on top of a non-deep learning baseline method: CSRT. CSRT by itself scores a similar EAO of 0.563. The results from this challenge show that currently, non-deep learning methods are still competitive. The dataset and benchmarking tool created for this challenge have been made publicly available at https://surgt.grand-challenge.org/. This challenge is expected to contribute to the development of autonomous robotic surgery and other digital surgical technologies.


Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Benchmarking , Algoritmos , Endoscopia , Processamento de Imagem Assistida por Computador/métodos
2.
Bioeng Transl Med ; 8(6): e10480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023698

RESUMO

Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. For differentiating benign from malignant lesions, computer-aided diagnosis (CAD) systems have greatly assisted radiologists by automatically segmenting and identifying features of lesions. Here, we present deep learning (DL)-based methods to segment the lesions and then classify benign from malignant, utilizing both B-mode and strain elastography (SE-mode) images. We propose a weighted multimodal U-Net (W-MM-U-Net) model for segmenting lesions where optimum weight is assigned on different imaging modalities using a weighted-skip connection method to emphasize its importance. We design a multimodal fusion framework (MFF) on cropped B-mode and SE-mode ultrasound (US) lesion images to classify benign and malignant lesions. The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNNs) trained using B-mode and SE-mode US images. The features from the CNNs are ensembled using the multimodal EmbraceNet model and DN classifies the images using those features. The experimental results (sensitivity of 100 ± 0.00% and specificity of 94.28 ± 7.00%) on the real-world clinical data showed that the proposed method outperforms the existing single- and multimodal methods. The proposed method predicts seven benign patients as benign three times out of five trials and six malignant patients as malignant five out of five trials. The proposed method would potentially enhance the classification accuracy of radiologists for breast cancer detection in US images.

3.
IEEE Trans Image Process ; 30: 5198-5210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33999821

RESUMO

In this paper, we propose a novel framework for multi-target multi-camera tracking (MTMCT) of vehicles based on metadata-aided re-identification (MA-ReID) and the trajectory-based camera link model (TCLM). Given a video sequence and the corresponding frame-by-frame vehicle detections, we first address the isolated tracklets issue from single camera tracking (SCT) by the proposed traffic-aware single-camera tracking (TSCT). Then, after automatically constructing the TCLM, we solve MTMCT by the MA-ReID. The TCLM is generated from camera topological configuration to obtain the spatial and temporal information to improve the performance of MTMCT by reducing the candidate search of ReID. We also use the temporal attention model to create more discriminative embeddings of trajectories from each camera to achieve robust distance measures for vehicle ReID. Moreover, we train a metadata classifier for MTMCT to obtain the metadata feature, which is concatenated with the temporal attention based embeddings. Finally, the TCLM and hierarchical clustering are jointly applied for global ID assignment. The proposed method is evaluated on the CityFlow dataset, achieving IDF1 76.77%, which outperforms the state-of-the-art MTMCT methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA