Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 14(17): 3221-3231, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29670958

RESUMO

During the early developmental process of organisms, the formation of left-right laterality requires a subtle mechanism, as it is associated with other principal body axes. Any inherent chiral feature in an egg cell can in principal trigger this spontaneous breaking of chiral symmetry. Individual microtubules, major cytoskeletal filaments, are known as chiral objects. However, to date there lacks convincing evidence of a hierarchical connection of the molecular nature of microtubules to large-scale chirality, particularly at the length scale of an entire cell. Here we assemble an in vitro active layer, consisting of microtubules and kinesin motor proteins, on a glass surface. Upon inclusion of methyl cellulose, the layered system exhibits a long-range active nematic phase, characterized by the global alignment of gliding MTs. This nematic order spans over the entire system size in the millimeter range and, remarkably, allows hidden collective chirality to emerge as counterclockwise global rotation of the active MT layer. The analysis based on our theoretical model suggests that the emerging global nematic order results from the local alignment of MTs, stabilized by methyl cellulose. It also suggests that the global rotation arises from the MTs' intrinsic curvature, leading to preferential handedness. Given its flexibility, this layered in vitro cytoskeletal system enables the study of membranous protein behavior responsible for important cellular developmental processes.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Rotação , Estereoisomerismo
2.
Biomed Microdevices ; 17(4): 78, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26162482

RESUMO

In nanotechnological devices, mass transport can be initiated by pressure driven flow, diffusion or by employing molecular motors. As the scale decreases, molecular motors can be helpful as they are not limited by increased viscous resistance. Moreover, molecular motors can move against diffusion gradients and are naturally fitted for nanoscale transportation. Among motor proteins, kinesin has particular potential for lab-on-a-chip applications. It can be used for sorting, concentrating or as a mechanical sensor. When bound to a surface, kinesin motors propel microtubules in random directions, depending on their landing orientation. In order to circumvent this complication, the microtubule motion should be confined or guided. To this end, dielectrophoretically aligned multi-walled-carbon nanotubes (MWCNT) can be employed as nanotracks. In order to control more precisely the spatial repartition of the MWCNTs, a screening method has been implemented and tested. Polygonal patterns have been fabricated with the aim of studying the guiding and the microtubule displacement between MWCNT segments. Microtubules are observed to transfer between MWCNT segments, a prerequisite for the guiding of microtubules in MWCNT circuit-based biodevices. The effect of the MWCNT organization (crenellated or hexagonal) on the MT travel distance has been investigated as well.


Assuntos
Microtúbulos/química , Nanotubos de Carbono/química , Desenho de Equipamento , Cinesinas/metabolismo , Microscopia de Fluorescência , Peso Molecular
3.
Nano Lett ; 14(2): 876-81, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24382007

RESUMO

As a complementary tool to nanofluidics, biomolecular-based transport is envisioned for nanotechnological devices. We report a new method for guiding microtubule shuttles on multi-walled carbon nanotube tracks, aligned by dielectrophoresis on a functionalized surface. In the absence of electric field and in fluid flow, alignment is maintained. The directed translocation of kinesin propelled microtubules has been investigated using fluorescence microscopy. To our knowledge, this is the first demonstration of microtubules gliding along carbon nanotubes.

4.
Biomed Microdevices ; 16(4): 501-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737133

RESUMO

Gliding of microtubule filaments on surfaces coated with the motor protein kinesin has potential applications for nano-scale devices. The ability to guide the gliding direction in three dimensions allows the fabrication of tracks of arbitrary geometry in space. Here, we achieve this by using kinesin-coated glass wires of micrometer diameter range. Unlike previous methods in which the guiding tracks are fixed on flat two-dimensional surfaces, the flexibility of glass wires in shape and size facilitates building in-vitro devices that have deformable tracks.


Assuntos
Vidro/química , Cinesinas/química , Microtúbulos/química , Microscopia de Fluorescência
5.
ACS Appl Bio Mater ; 2(10): 4121-4128, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021426

RESUMO

Transport deficits with motor neuron degeneration have been implicated in amyotrophic lateral sclerosis (ALS). We report a biomimetic system composed of microtubules/kinesin motor that mimics the dysregulated motor dynamics of ALS. Pathogenic ALS mutants A4V SOD1 completely shut off motility. Treatment with 5 nm citrate coated gold nanoparticles recovers the impaired motor stepping by remodeling the A4V SOD1 rather than stabilizing microtubules or protein folding. Instead, gold nanoparticles alter the protein by a mechanism that reforms protein elements of A4V SOD1, in turn fixing the aberrant interaction of kinesin with microtubules. Reinstating kinesin motility holds potential for managing debilitating ALS.

6.
Adv Biosyst ; 1(10): e1700108, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32646192

RESUMO

There is increasing evidence that tau protein behaves in a prion-like manner in tauopathy. The stabilization of tau protein using a small molecular compound can limit tauopathy associated morbidity that advances with ageing. Here, a lab-on-a-chip experiment is reported, where gold citrate nanoparticles (5 nm, AuNPs) can remodel mutant tau protein (P301L) and prion, thus resolving the mutant tau- and prion-mediated impairment of kinesin cargo transport on microtubules. It is found that tau protein is overexpressed in Alzheimer's disease (AD) patient serum samples and the tau conformational change can also be affected in human serum samples of AD when treated with AuNPs ex vivo. Similarly, AuNPs reorganizing the prion protein and inducing conformational changes of prions in AD serum have been observed, while having no effect on alpha-synuclein in Parkinson patient serum. The mapping of AD serum mediated traffic jams, using particle tracking and mean square displacement analysis, and the observed recovery of uninterrupted processive motor functions by AuNP treatment show that kinesin cargo assays might be a useful method for future ex vivo validation of a targeted therapy against tauopathy before administration, a viable option to combat various neurodegenerative disorders arising from the susceptibility of amyloidogenic proteins toward aggregation.

7.
ACS Nano ; 9(11): 11003-13, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26426418

RESUMO

We report the observation of kinesin driven quantum dots (QDs) trapped in a microtubule loop, allowing the investigation of moving QDs for a long time and an unprecedented long distance. The QD conjugates did not depart from our observational field of view, enabling the tracking of specific conjugates for more than 5 min. The unusually long run length and the periodicity caused by the loop track allow comparing and studying the trajectory of the kinesin driven QDs for more than 2 full laps, i.e., about 70 µm, enabling a statistical analysis of interactions of the same kinesin driven object with the same obstacle. The trajectories were extracted and analyzed from kymographs with a newly developed algorithm. Despite dispersion, several repetitive trajectory patterns can be identified. A method evaluating the similarity is introduced allowing a quantitative comparison between the trajectories. The velocity variations appear strongly correlated to the presence of obstacles. We discuss the reasons making this long continuous travel distances on the loop track possible.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Pontos Quânticos/metabolismo , Animais , Bioensaio , Difusão Dinâmica da Luz , Quimografia , Microscopia de Fluorescência , Tamanho da Partícula , Probabilidade , Sus scrofa , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA