Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2404348, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150055

RESUMO

Stratified films offer high performance and multifunctionality, yet achieving fully stratified films remains a challenge. The layer-by-layer method, involving the sequential deposition of each layer, has been commonly utilized for stratified film fabrication. However, this approach is time-consuming, labor-intensive, and prone to leaving defects within the film. Alternatively, the self-stratification process exploiting a drying binary colloidal mixture is intensively developed recently, but it relies on strict operating conditions, typically yielding a heterogeneous interlayer. In this study, an active interfacial stratification process for creating completely stratified nanoparticle (NP) films is introduced. The technique leverages NPs with varying interfacial activity at the air-water interface. With the help of depletion pressure, the lateral compression of NP mixtures at the interface induces individual desorption of less interfacial active NPs into the subphase, while more interfacial active NPs remain at the interface. This simple compression leads to nearly perfect stratified NP films with controllability, universality, and scalability. Combined with a solvent annealing process, the active stratification process enables the fabrication of stratified films comprising a polymeric layer atop a NP layer. This work provides insightful implications for designing drug encapsulation and controlled release, as well as manufacturing transparent and flexible electrodes.

2.
Soft Matter ; 19(21): 3841-3848, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37194380

RESUMO

High internal phase emulsions stabilized with colloidal particles (Pickering HIPEs) have recently been studied intensively because of their great stability achieved by the irreversible adsorption of particles onto the oil-water interface and their usage as a template for synthesizing porous polymeric materials, called PolyHIPEs. In most cases, Pickering HIPEs with microscale droplets ranging from tens of micrometers to hundreds of micrometers have been successfully achieved, but the stabilization of Pickering HIPEs with millimeter-sized droplets is rarely reported. In this study, we report for the first time that, by using shape-anisotropic silica particle aggregates as a stabilizer, successful stabilization of Pickering HIPEs with millimeter-sized droplets can be achieved, and the size of droplets can be simply controlled. Additionally, we demonstrate that stable PolyHIPEs with large pores can be readily converted to PolyHIPEs with millimeter-scale pores, which have advantages in absorbent materials and biomedical engineering applications.

3.
J Allergy Clin Immunol ; 147(5): 1742-1752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33069716

RESUMO

BACKGROUND: Hundreds of variants associated with atopic dermatitis (AD) and psoriasis, 2 common inflammatory skin disorders, have previously been discovered through genome-wide association studies (GWASs). The majority of these variants are in noncoding regions, and their target genes remain largely unclear. OBJECTIVE: We sought to understand the effects of these noncoding variants on the development of AD and psoriasis by linking them to the genes that they regulate. METHODS: We constructed genomic 3-dimensional maps of human keratinocytes during differentiation by using targeted chromosome conformation capture (Capture Hi-C) targeting more than 20,000 promoters and 214 GWAS variants and combined these data with transcriptome and epigenomic data sets. We validated our results with reporter assays, clustered regularly interspaced short palindromic repeats activation, and examination of patient gene expression from previous studies. RESULTS: We identified 118 target genes of 82 AD and psoriasis GWAS variants. Differential expression of 58 of the 118 target genes (49%) occurred in either AD or psoriatic lesions, many of which were not previously linked to any skin disease. We highlighted the genes AFG1L, CLINT1, ADO, LINC00302, and RP1-140J1.1 and provided further evidence for their potential roles in AD and psoriasis. CONCLUSIONS: Our work focused on skin barrier pathology through investigation of the interaction profile of GWAS variants during keratinocyte differentiation. We have provided a catalogue of candidate genes that could modulate the risk of AD and psoriasis. Given that only 35% of the target genes are the gene nearest to the known GWAS variants, we expect that our work will contribute to the discovery of novel pathways involved in AD and psoriasis.


Assuntos
Cromatina , Dermatite Atópica/genética , Queratinócitos , Psoríase/genética , Predisposição Genética para Doença , Humanos
4.
Soft Matter ; 18(1): 53-61, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34843612

RESUMO

A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid-like property because of concentrated polyhedral droplets. Although many studies have proposed theoretical and empirical models to explain the rheological properties of HIPEs, most of them are only limited to the emulsions stabilized by surfactants. In the case of high internal phase Pickering emulsions (HIPPEs), much greater values of elastic modulus have been reported, compared to those of surfactant-stabilized HIPEs, but so far, there have been no clear explanations for this. In this study, we investigate how colloidal particles attribute to the significantly high elasticity of HIPPEs, specifically considering two different contributions, namely, interfacial rheological properties and bulk rheological properties. Our results reveal that the flocculated structures of colloidal particles that possess a significant elasticity can be interconnected between dispersed droplets. Furthermore, this elastic structure is a crucial factor in the high elasticity of HIPPEs, which is also supported by a simple theoretical model.

5.
Eur J Nutr ; 59(7): 3171-3182, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31822988

RESUMO

PURPOSE: Specific food consumption, besides food allergy, may aggravate atopic dermatitis (AD). However, previous reports on the association between AD and food intake in adolescents are scarce. The aim of this study was to determine the relationship between AD and specific food consumption frequency in adolescents. METHODS: A cross-sectional analysis using data from the Korea Youth Risk Behavior Web-based Survey 2017 was performed. The frequency of food consumption in the recent-diagnosed AD group (AD diagnosed within 12 months) compared to those in the previous-diagnosed AD (AD diagnosed more than 12 months ago) or control group were investigated. RESULTS: A total of 53,373 participants were eligible for this study. The weighted prevalence of the recent-diagnosed AD and the previous-diagnosed AD was 7.39% and 18.00%, respectively. When compared with subjects with the previous-diagnosed AD, those with the recent-diagnosed AD were significantly more likely to frequently consume fast foods (odds ratio OR 1.405; 95% CI 1.150-1.717), energy drinks (OR 1.457; 95% CI 1.175-1.807), or convenience food (OR 1.304; 95% CI 1.138-1.495). Patients of the recent-diagnosed AD were significantly more likely to frequently consume fast foods (OR 1.374; 95% CI 1.155-1.634) than the control group. The differences in the frequency of specific food consumption among groups were more pronounced in high school students than in middle school students. CONCLUSIONS: Frequent intake of fast foods, energy drinks, and convenience food was related to the recent-diagnosed AD in adolescents. Prospective cohort and interventional studies are needed to identify causal relationships.


Assuntos
Dermatite Atópica/epidemiologia , Bebidas Energéticas , Fast Foods , Adolescente , Estudos Transversais , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/etiologia , Bebidas Energéticas/efeitos adversos , Fast Foods/efeitos adversos , Feminino , Humanos , Masculino , Razão de Chances , República da Coreia/epidemiologia , Estudantes/estatística & dados numéricos
6.
FASEB J ; 32(3): 1510-1523, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29180440

RESUMO

As the outermost physical barrier of an organism, the skin is diurnally exposed to UV radiation (UVR). Recent studies have revealed that the skin exhibits a circadian rhythm in various functions, and this oscillation is disturbed and reset via a strong environmental cue, the UVR. However, a molecular link between circadian perturbation by UVR and UVR-induced cellular responses has not been investigated. We identified tissue inhibitor of metalloproteinase ( TIMP)- 3 as a novel circadian locomotor output cycles kaput (CLOCK)-dependent diurnal gene by using a CLOCK-knockdown strategy in human keratinocytes. Among dozens of identified transcripts down-regulated by CLOCK knockdown, TIMP3 displayed a rhythmic expression in a CLOCK-dependent manner, in which the expression of matrix metalloproteinase (MMP)-1 and inflammatory cytokines, such as TNF-α, chemokine (C-X-C motif) ligand (CXCL)-1, and IL-8, were inversely regulated. Upon UVB exposure, the expression of CLOCK and TIMP3 was down-regulated, which led to an up-regulation of secretion of MMP1 and TNF-α proteins and in the transcription of CXCL1 and IL-8 via CCAAT-enhancer binding protein (C/EBP)-α. UVB-induced TNF-α secretion increased further or decreased by knockdown or overexpression of TIMP3, respectively, as well as by CLOCK. As a novel CLOCK-dependent diurnal gene, TIMP3 inhibits the expression of inflammatory cytokines that are up-regulated by UV irradiation in human keratinocytes. Thus, our work suggests a molecular link between circadian perturbation by UVR and UVR-induced inflammation.-Park, S., Kim, K., Bae, I.-H., Lee, S. H., Jung, J., Lee, T. R., Cho, E.-G. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes.


Assuntos
Proteínas CLOCK/metabolismo , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos da radiação , Queratinócitos/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas CLOCK/genética , Citocinas/genética , Humanos , Queratinócitos/patologia , Inibidor Tecidual de Metaloproteinase-3/genética
7.
Anal Chem ; 90(3): 1660-1667, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29308648

RESUMO

Because numerous drugs are administered through an oral route and primarily absorbed at the intestine, the prediction of drug permeability across an intestinal epithelial cell membrane has been a crucial issue in drug discovery. Thus, various in vitro permeability assays have been developed such as the Caco-2 assay, the parallel artificial membrane permeability assay (PAMPA), the phospholipid vesicle-based permeation assays (PVPA) and Permeapad. However, because of the time-consuming and quite expensive process for culturing cells in the Caco-2 assay and the unknown microscopic membrane structures of the other assays, a simpler yet more accurate and versatile technique is still required. Accordingly, we developed a new platform to measure the permeability of small molecules across a planar freestanding lipid bilayer with a well-defined area and structure. The lipid bilayer was constructed within a conventional UV spectrometer cell, and the transport of drug molecules across the bilayer was recorded by UV absorbance over time. We then computed the permeability from the time-dependent diffusion equation. We tested this assay for five exemplary hydrophilic drugs and compared their values with previously reported ones. We found that our assay has a much higher permeability compared to the other techniques, and this higher permeability is related to the thickness of the lipid bilayer. Also we were able to measure the dynamic permeability upon the addition of a membrane-disrupting surfactant demonstrating that our assay has the capability to detect real-time changes in permeability across the lipid bilayer.

8.
Cytokine ; 110: 126-130, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29730385

RESUMO

Melanin synthesis in melanocytes is affected by various cytokines. Here, we reported for the first time that tumor necrosis factor superfamily member 14 (TNFSF14) inhibits melanogenesis in the primary culture of human epidermal melanocytes. TNFSF14 is known to bind to its receptors herpes virus entry mediator (HVEM) and lymphotoxin ß receptor (LTßR) for signal transduction, but TNFSF14-induced hypopigmentation was independent of HVEM and LTßR in melanocytes. To explore signaling in melanocytes treated with TNFSF14, we performed RNA-seq and found that nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling is activated by TNFSF14. Further, we observed that inhibition of NF-kB effectively blocks the hypopigmentation induced by TNFSF14. We conclude that TNFSF14 inhibits melanogenesis in melanocytes via NF-κB signaling and could be applied in the treatment of cutaneous pigment disorders.


Assuntos
Melanócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Linhagem Celular , Humanos , Ativação Linfocitária/fisiologia , Receptor beta de Linfotoxina/metabolismo , Melaninas/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo
9.
Soft Matter ; 14(7): 1094-1099, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29231224

RESUMO

Double emulsions, the simplest form of multiple emulsion, have been intensively utilized in various industries as well as in fundamental research. A variety of strategies to effectively form double emulsions have been developed, but no simple yet controlled and scalable technique has been achieved yet. Herein, we examine the mechanism of the entire process of double emulsion formation by phase inversion, and we propose a universal one-step strategy for the formation of an oil/water/oil double emulsion using oil soluble polymers and hydrophobic silica nanoparticles. We demonstrate that this new approach enables control of both the fraction and the number of inner small droplets; even high internal phase double emulsions could be achieved.

10.
Soft Matter ; 14(13): 2476-2483, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29561060

RESUMO

Microbutton rheometry reveals that the chiral morphology of dipalmitoylphosphatidylcholine (DPPC) monolayers imparts a chiral nonlinear rheological response. The nonlinear elastic modulus and yield stress of DPPC monolayers are greater when sheared clockwise (C), against the natural winding direction of DPPC domains, than counter-clockwise (CC). Under strong CC shear strains, domains deform plastically; by contrast, domains appear to fracture under strong C shearing. After CC shearing, extended LC domains develop regular patterns of new invaginations as they recoil, which we hypothesize reflect the nucleation and growth of new defect lines across which the tilt direction undergoes a step change in orientation. The regular spacing of these twist-gradient defects is likely set by a competition between the molecular chirality and the correlation length of the DPPC lattice. The macroscopic mechanical consequences of DPPC's underlying molecular chirality are remarkable, given the single-component, non-cross-linked nature of the monolayers they form.

11.
Nucleic Acids Res ; 43(15): 7462-79, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26202967

RESUMO

ΔNp63 is required for both the proliferation and differentiation of keratinocytes, but its role in the differentiation of these cells is poorly understood. The corresponding gene, TP63, harbors the MIR944 sequence within its intron. However, the mechanism of biogenesis and the function of miR-944 are unknown. We found that miR-944 is highly expressed in keratinocytes, in a manner that is concordant with that of ΔNp63 mRNA, but the regulation of miR-944 expression under various conditions did not correspond with that of ΔNp63. Bioinformatics analysis and functional studies demonstrated that MIR944 has its own promoter. We demonstrate here that MIR944 is a target of ΔNp63. Promoter analysis revealed that the activity of the MIR944 promoter was markedly enhanced by the binding of ΔNp63, which was maintained by the supportive action of AP-2 during keratinocyte differentiation. Our results indicated that miR-944 biogenesis is dependent on ΔNp63 protein, even though it is generated from ΔNp63 mRNA-independent transcripts. We also demonstrated that miR-944 induces keratin 1 and keratin 10 expression by inhibiting ERK signaling and upregulating p53 expression. Our findings suggested that miR-944, as an intronic miRNA and a direct target of ΔNp63, contributes to the function of ΔNp63 in the induction of epidermal differentiation.


Assuntos
Diferenciação Celular/genética , Células Epidérmicas , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Íntrons , Queratinócitos/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Regiões Promotoras Genéticas
12.
Proc Natl Acad Sci U S A ; 110(33): E3054-60, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23901107

RESUMO

At low mole fractions, cholesterol segregates into 10- to 100-nm-diameter nanodomains dispersed throughout primarily dipalmitoylphosphatidylcholine (DPPC) domains in mixed DPPC:cholesterol monolayers. The nanodomains consist of 6:1 DPPC:cholesterol "complexes" that decorate and lengthen DPPC domain boundaries, consistent with a reduced line tension, λ. The surface viscosity of the monolayer, ηs, decreases exponentially with the area fraction of the nanodomains at fixed surface pressure over the 0.1- to 10-Hz range of frequencies common to respiration. At fixed cholesterol fraction, the surface viscosity increases exponentially with surface pressure in similar ways for all cholesterol fractions. This increase can be explained with a free-area model that relates ηs to the pure DPPC monolayer compressibility and collapse pressure. The elastic modulus, G', initially decreases with cholesterol fraction, consistent with the decrease in λ expected from the line-active nanodomains, in analogy to 3D emulsions. However, increasing cholesterol further causes a sharp increase in G' between 4 and 5 mol% cholesterol owing to an evolution in the domain morphology, so that the monolayer is elastic rather than viscous over 0.1-10 Hz. Understanding the effects of small mole fractions of cholesterol should help resolve the controversial role cholesterol plays in human lung surfactants and may give clues as to how cholesterol influences raft formation in cell membranes.


Assuntos
Colesterol/farmacologia , Surfactantes Pulmonares/química , Síndrome do Desconforto Respiratório do Recém-Nascido/prevenção & controle , Viscosidade/efeitos dos fármacos , 1,2-Dipalmitoilfosfatidilcolina , Colesterol/análise , Elasticidade , Fenômenos Eletromagnéticos , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Reologia
13.
Langmuir ; 30(41): 12164-70, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25226338

RESUMO

We study electrostatic interactions of polystyrene particles at an oil/water interface controlled by a chemical reaction of carboxylate surface functional groups. By replacing the carboxyl functional groups with hydrocarbon chains using the well-known EDC (1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide) coupling reaction, the surface charge density decreases while the hydrophobicity of the colloid surface increases. Direct visualization of the particle-laden interface reveals that, depending on the extent of hydrocarbon coupling, the strength of the electrostatic repulsion can be regulated: the repulsive interaction increases with the reaction, removing aggregates, but rapidly decreases if the reaction proceeds too much, forming a large aggregation. This simple reaction, thus, dramatically changes the structures of the colloidal monolayers at the oil/water interface. We conclude that such structural change is the result of change of the repulsive interactions from the oil phase, although interactions in the water phase are also changed slightly.

14.
Langmuir ; 30(48): 14369-74, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422050

RESUMO

We present a novel technique to measure diffusion coefficients of insoluble surfactant monolayers. We merge a surfactant-coated droplet with a fluorescently labeled planar monolayer. During the merging process, a monolayer on a droplet displaces the existing planar monolayer, leaving a dark area when viewed under a fluorescence microscope. We measure fractional intensities as the dyes recover, which allows diffusion coefficients to be computed. We validate this technique with the two most common phospholipid monolayers (DPPC and DOPC) and study the diffusion of their mixtures. The proposed technique has several advantages over the FRAP technique and is potentially capable of measuring the diffusion of any soluble/insoluble surfactant monolayers.


Assuntos
Fosfolipídeos/química , Tensoativos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Microscopia de Fluorescência , Fosfatidilcolinas/química
15.
Langmuir ; 30(29): 8829-38, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-24991992

RESUMO

Adding small fractions of cholesterol decreases the interfacial viscosity of dipalmitoylphosphatidylcholine (DPPC) monolayers by an order of magnitude per wt %. Grazing incidence X-ray diffraction shows that cholesterol at these small fractions does not mix ideally with DPPC but rather induces nanophase separated structures of an ordered, primarily DPPC phase bordered by a line-active, disordered, mixed DPPC-cholesterol phase. We propose that the free area in the classic Cohen and Turnbull model of viscosity is inversely proportional to the number of molecules in the coherence area, or product of the two coherence lengths. Cholesterol significantly reduces the coherence area of the crystals as well as the interfacial viscosity. Using this free area collapses the surface viscosity data for all surface pressures and cholesterol fractions to a universal logarithmic relation. The extent of molecular coherence appears to be a fundamental factor in determining surface viscosity in ordered monolayers.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Membranas Artificiais , Propriedades de Superfície , Viscosidade , Difração de Raios X
16.
J Oleo Sci ; 73(4): 437-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556278

RESUMO

Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.


Assuntos
Anti-Infecciosos , Desinfetantes , Surfactantes Pulmonares , Humanos , Adsorção , Pulmão , Guanidinas/química , Guanidina
17.
Aging Cell ; 23(2): e14049, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062989

RESUMO

Subcutaneous adipose tissue (SAT), a vital energy reservoir and endocrine organ for maintaining systemic glucose, lipid, and energy homeostasis, undergoes significant changes with age. However, among the existing aging-related markers, only few genes are associated with SAT aging. In this study, weighted gene co-expression network analysis was used on a transcriptome of SAT obtained from the Genotype-Tissue Expression portal to identify biologically relevant, SAT-specific, and age-related marker genes. We found modules that exhibited significant changes with age and identified GYG2 as a novel key aging associated gene. The link between GYG2 and mitochondrial function as well as brown/beige adipocytes was supported using additional bioinformatics and experimental analyses. Additionally, we identified PPARG as the transcription factor of GYG2 expression. The newly discovered GYG2 marker can be used to not only determine the age of SAT but also uncover new mechanisms underlying SAT aging.


Assuntos
Gordura Subcutânea , Transcriptoma , Humanos , Tecido Adiposo/metabolismo , Envelhecimento/genética , Biomarcadores/metabolismo , Mitocôndrias/genética , Gordura Subcutânea/metabolismo , Transcriptoma/genética
18.
iScience ; 27(4): 109556, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617558

RESUMO

To achieve the successful separation of emulsions containing fine dispersed droplets and low volume fractions, a membrane with pore sizes comparable to or smaller than the droplet size is typically required. Although this approach is effective, its utilization is limited to the separation of emulsions with relatively large droplets. To overcome this limitation, a secondary membrane can be formed on the primary membrane to reduce pore size, but this can also be time-consuming and costly. Therefore, a facile and effective method is still required to be developed for separating emulsions with fine droplets. We introduce a pre-wetted mesh membrane with a pore size significantly larger than droplets, easily fabricated by wetting a hydrophilic stainless-steel mesh with water. Applying this membrane to emulsion separation via gravity-driven flow confirms a high efficiency greater than 98%, even with droplets approximately 10 times smaller than the pore size.

19.
Exp Dermatol ; 22(8): 541-6, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23879813

RESUMO

Overproduction of melanin can lead to medical disorders such as postinflammatory melanoderma and melasma. Therefore, developing antimelanogenic agents is important for both medical and cosmetic purposes. In this report, we demonstrated for the first time that the antidiabetic drug voglibose is a potent antimelanogenic agent. Voglibose is a representative antidiabetic drug possessing inhibitory activity towards human α-glucosidase; it blocked the proper N-glycan modification of tyrosinase, resulting in a dramatic reduction of the tyrosinase protein level by altering its stability and subsequently decreasing melanin production. Acarbose, another antihyperglycaemic drug that has a lower inhibitory effect on human intracellular α-glucosidase compared with voglibose, did not cause any changes in either the N-glycan modification of tyrosinase or the tyrosinase protein level, indicating that voglibose was the most efficient antimelanogenic agent among the widely used antihyperglycaemic agents. Considering that voglibose was originally selected from the valiolamine derivatives in a screen for an oral antidiabetic drug with a strong inhibitory activity towards intestinal α-glucosidase and low cell permeability, we propose an alternative strategy for screening compounds from valiolamine derivatives that show high inhibitory activity towards human intracellular α-glucosidases and high cell permeability, with the goal of obtaining antimelanogenic agents that are effective inside the cells.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inositol/análogos & derivados , Melanócitos/citologia , Melanócitos/efeitos dos fármacos , Acarbose/química , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Glicosídeo Hidrolases , Humanos , Inflamação , Inositol/uso terapêutico , Manosidases , Melaninas/biossíntese , Microscopia Eletrônica de Transmissão , Monofenol Mono-Oxigenase/metabolismo , Permeabilidade , Polissacarídeos/química , Reação em Cadeia da Polimerase em Tempo Real , Pele/efeitos dos fármacos
20.
Front Mol Biosci ; 10: 1228640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38482540

RESUMO

Introduction: Senescent melanocytes are major contributors to age-related changes in the skin, highlighting the contribution to skin aging. Moreover, prolonged photodamage, such as that caused by UV exposure, can result in melanin accumulation and accelerated melanocyte senescence, thereby exacerbating aging. Melasolv™ is a substance that induces potent depigmentation effects and exhibits low toxicity. The present study aimed to investigate the potential effect of Melasolv™ on senescent melanocytes. Methods: We profiled the transcriptomics of Melasolv™-treated melanocytes and identified the possible mechanism of action (MOA) and targets using connectivity mapping analysis. We identified differentially expressed genes in response to treatment with Melasolv™ and validated the data using quantitative real-time PCR. Moreover, we performed an in vitro ß-gal assay in senescent melanocytes for further validation. Results: Melasolv™ reduced ß-gal and melanin levels in senescent melanocytes. Moreover, the identified MOAs are associated with anti-aging and anti-senescence effects. Discussion: Our findings clearly indicate that Melasolv™ not only exhibits anti-senescent properties but can also potentially alleviate melanin accumulation in senescent cells. These findings could have far-reaching implications in the treatment of age-related photodamaged skin conditions, such as senile lentigo and melasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA