Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 253: 114653, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812868

RESUMO

In-water cleaning (IWC) involves the removal of biofilms and foulants from the hull of a ship using brush or water jet. During IWC, several factors associated with the harmful chemical contaminants release to the marine environment, which can create "hotspots" of chemical contamination in coastal areas. To elucidate the potential toxic effects of IWC discharge, we investigated developmental toxicity in embryonic flounder, which are sensitive life stage to chemical exposure. Zinc and copper were the dominant metals, while zinc pyrithione was the most abundant biocide associated with IWC discharge in two remotely operated IWC. Discharge from IWC carried by both remotely operated vehicles (ROVs) produced developmental malformations including pericardial edema, spinal curvature, and tail-fin defects. In an analyses of differential gene expression profiles (fold-change of genes with a cutoff < 0.05) as assessed by high-throughput RNA sequencing, genes associated with muscle development were commonly and significantly changed. The gene ontology (GO) of embryos exposed to IWC discharge from ROV A activities highly enriched muscle and heart development, while cell signaling and transport were evident in embryos exposed to IWC discharge of ROV B. We analyzed the gene network by significant GO terms. In the network, TTN, MYOM1, CASP3, and CDH2 genes appeared to be key regulators of the toxic effects on muscle development. In embryos exposed to ROV B discharge, HSPG2, VEGFA, and TNF genes related to the nervous system pathway were affected. These results shed light on the potential impacts of muscle and nervous system development in non-target coastal organisms exposed to contaminants found in IWC discharge.


Assuntos
Procedimentos Cirúrgicos Robóticos , Poluentes Químicos da Água , Animais , Água/química , Peixes , Metais/farmacologia , Biofilmes , Poluentes Químicos da Água/análise , Embrião não Mamífero
2.
Ecotoxicol Environ Saf ; 233: 113337, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219958

RESUMO

A new generation of booster biocides that include metal pyrithiones (PTs) such as copper pyrithione (CuPT) and zinc pyrithione (ZnPT) are being used as tributyltin alternatives. In the marine environment, ZnPT can easily transchelate Cu to form CuPT, and the environmental fate and persistence of these two metal pyrithiones are closely related. Although some data on the toxicity of biocides on marine fish are available, little is known about their toxicity and toxic pathway. We thus compared the toxic effects of CuPT and ZnPT on embryonic olive flounder (Paralichthys olivaceus) by investigating their adverse effects based on developmental morphogenesis and transcriptional variation. In our study, the toxic potency of CuPT was greater with respect to developmental malformation and mortality than ZnPT. Consistent with the developmental effects, the expression of genes related to tail fin malformation (including plod2, furin, and wnt3a) was higher in embryonic flounder exposed to CuPT than in those exposed to ZnPT. Genes related to muscle and nervous system development exhibited significant changes on differential gene expression profiles using RNA sequencing (cutoff value P < 0.05). Gene ontology analysis of embryos exposed to CuPT revealed affected cellular respiration and kidney development, whereas genes associated with cell development, nervous system development and heart development showed significant variation in embryonic flounder exposed to ZnPT. Overall, our study clarifies the common and unique developmental toxic effects of CuPT and ZnPT through transcriptomic analyses in embryonic flounder.


Assuntos
Desinfetantes , Linguado , Poluentes Químicos da Água , Animais , Desinfetantes/toxicidade , Linguado/genética , Compostos Organometálicos , Piridinas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Environ Sci Technol ; 54(23): 15170-15179, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197181

RESUMO

Flounders have been widely used as indicator species for monitoring the benthic environment of marine coastal regions owing to their habitat and feeding preferences in or on sandy sediments. Here, a single-step, sensitive, specific, and simple luciferase assay was developed, using the olive flounder cyp1a1 gene, for effective detection of CYP1A-inducing contaminants in coastal sediments. The developed cyp1a1-luciferase assay was highly sensitive to the widely used CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo[a]pyrene (B[a]P), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In the case of TCDD, significant dose-dependent increases in luciferase activity (0.3-300 ng/L) were detected. The assay was more sensitive to PCB 126 than to B[a]P. The assay also involved the highly sensitive expression of luciferase to extracted mixtures of PCBs and polycyclic aromatic hydrocarbons (PAHs) collected from coastal sediments. PCBs were more capable of cyp1a1 induction in the assay system at small doses than PAHs in environmental samples. Using the cyp1a1-luciferase assay along with water or sediment chemistry will certainly aid in diagnosing CYP1A-inducing contaminants in coastal environments.


Assuntos
Linguado , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Citocromo P-450 CYP1A1/genética , Luciferases/genética
4.
Environ Sci Technol ; 53(13): 7830-7839, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244070

RESUMO

To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 µg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 µg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 µg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 µg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.


Assuntos
Rotíferos , Compostos de Trialquitina , Animais , Metabolismo dos Lipídeos , Receptores X de Retinoides
5.
Ecotoxicol Environ Saf ; 180: 23-32, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31059904

RESUMO

The use of alternative biocides has increased due to their economic and ecological relevance. Although data regarding the toxicity of commercial alternative biocides in marine organisms are accumulating, little is known about their toxic pathways or mechanisms. To compare the toxic effects of commercial alternative biocides on non-target pelagic fish (flounder) embryos, we investigated the adverse effects of developmental malformation and transcriptional changes. Three biocides including Diuron, Irgarol 1051® and Sea-Nine 211® produced a largely overlapping suite of developmental malformations, including tail-fin fold defects and dorsal body axis curvature. In our test, the potencies of these biocides were ranked in the following order with respect to malformation and mortalities: Sea-Nine 211®â€¯> Irgarol 1051®â€¯> Diuron. Consistent with the toxicity rankings, the expression of genes related to heart formation was greater in embryonic flounder exposed to Sea-Nine 211® than in those exposed to Irgarol 1051® or Diuron, while expression of genes related to fin malformation was greater in the Irgarol 1051® exposure group. In analyses of differential gene expression (DEG) profiles (fold change of genes with a cutoff P < 0.05) by high-throughput sequencing (RNA-seq), genes associated with nervous system development, transmembrane transport activity, and muscle cell development were significantly changed commonly. Embryos exposed to Diuron showed changes related to cellular protein localization, whereas genes associated with immune system processes were up-regulated significantly in embryos exposed to Irgarol 1051®. Genes related to actin filament organization and embryonic morphogenesis were up-regulated in embryos exposed to Sea-Nine 211®. Overall, our study provides a better understanding of the overlapping and unique developmental toxic effects of three commercial booster biocides through transcriptomic analyses in a non-target species, embryonic flounder.


Assuntos
Desinfetantes/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Peixes/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Animais , Incrustação Biológica/prevenção & controle , Diurona/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Tiazóis/toxicidade , Triazinas/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-29300684

RESUMO

The flux and distribution of methane (CH4) was investigated in the seawater column at 14 stations in the Gunsan Basin, the southeastern part of Yellow Sea from 2013 to 2015. Here CH4 is concentrated 2.4-4.7 (3.4 ± 0.7) nM in the surface and 2.5-7.4 (5.2 ± 1.7) nM in the bottom layer. The CH4 saturation ratios ranged from 65.5% to 295.5% (162.6 ± 68.7), comprising the mean sea-to-air CH4 flux of 3.8 to 25.3 (15.6 ± 5.5) µM m-2d-1. Methane concentration was largely different in the upper and the lower seawater layers that is separated by the thermocline of which depth is variable (20-60 m) depending on the time of sampling. The concentration of seawater dissolved CH4 is high between the bottom surface of the thermocline layer and the sea floor. Generally it tends to decrease from the south-westernmost part of the basin toward the west coast of Korea. This distribution pattern of CH4 seems to result from the CH4 supply by decomposition of organic matters produced in the upper seawater layer that is superimposed by the larger supply from the underlying sediment layer especially beneath the thermocline. The latter is manifested by ubiquitous CH4 seeps from the seafloor sediments.


Assuntos
Metano/análise , Metano/farmacocinética , Água do Mar/química , Poluentes Químicos da Água/farmacocinética , Poluição Química da Água/análise , República da Coreia , Poluentes Químicos da Água/análise , Áreas Alagadas
7.
Arch Environ Contam Toxicol ; 73(1): 103-117, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695254

RESUMO

After the collision of the Singapore-registered oil tanker M/V Wu Yi San into the oil terminal of Yeosu, Korea on January 31, 2014, approximately 900 m3 of oil and oil mixture were released from the ruptured pipelines. The oil affected more than 10 km of coastline along Gwangyang Bay. Emergency oil spill responses recovered bulk oil at sea and cleaned up the stranded oil on shore. As part of an emergency environmental impact assessment, region-wide monitoring of oil contamination in oyster had been conducted for 2 months. Highly elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) were detected at most of the spill affected sites. Four days after the spill, the levels of PAHs in oysters increased dramatically to 627-81,000 ng/g, the average of which was 20 times higher than those found before the spill (321-4040 ng/g). The level of PAHs in these oysters increased until 10 days after the spill and then decreased. Due to the strong tidal current and easterly winter winds, the eastern part of the Bay-the Namhae region-was heavily contaminated compared with other regions. The accumulation and depuration of spilled oil in oyster corresponded with the duration and intensity of the cleanup activities, which is the first field observation in oil spill cases. Human health risk assessments showed that benzo[a]pyrene equivalent concentrations exceeded levels of concern in the highly contaminated sites, even 60 days after the spill.


Assuntos
Dieta/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Ostreidae/metabolismo , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Humanos , Poluição por Petróleo/estatística & dados numéricos , República da Coreia , Medição de Risco , Poluentes Químicos da Água/análise
8.
Arch Environ Contam Toxicol ; 73(1): 93-102, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28695253

RESUMO

Approximately 10,900 t of crude oil was released 10 km off the west coast of Korea after the collision between the oil tanker Hebei Spirit and a barge carrying a crane in December 2007. To assess the areal extent and temporal trends of PAH contamination, 428 sediment samples were collected from December 2007 through May 2015 for PAH analysis. Sedimentary PAH concentrations measured immediately after the spill ranged from 3.2 to 71,200 ng g-1, with a mean of 3800 ng g-1. Increases in PAH concentrations were observed at stations 7-23, which were heavily oiled due to tidal currents and northwesterly wind that transported the spilled oil to these locations. Mean and maximum PAH concentrations decreased drastically from 3800 to 88.5 and 71,200 to 1700 ng g-1, respectively, 4 months after the spill. PAH concentrations highly fluctuated until September 2008 and then decreased slowly to background levels. Reduction rate was much faster at the sandy beaches (k = 0.016) than in the muddy sites (k = 0.001). In muddy sediments, low attenuation due to low flushing rate in the mostly anaerobic sediment possibly contributed the persistence of PAHs. By May 2015 (~7.5 years after the spill), mean and maximum PAH concentrations decreased by 54 and 481 times, respectively, compared with the peak concentrations. The sedimentary PAH concentrations in the monitoring area have returned to regional background levels.


Assuntos
Monitoramento Ambiental , Poluição por Petróleo/análise , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , República da Coreia
9.
Environ Sci Technol ; 49(22): 13639-48, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26458192

RESUMO

Interspecific difference in the developmental toxicity of crude oil to embryonic fish allows the prediction of injury extent to a number of resident fish species in oil spill sites. This study clarifies the comparative developmental effects of Iranian heavy crude oil (IHCO) on the differences of biouptake and toxic sensitivity between embryonic spotted sea bass (Lateolabrax maculates) and olive flounder (Paralichthys olivaceus). From 24 h after exposure to IHCO, several morphological defects were observed in both species of embryonic fish, including pericardial edema, dorsal curvature of the trunk, developmental delay, and reduced finfolds. The severity of defects was greater in flounder compared to that in sea bass. While flounder embryos accumulated higher embryo PAH concentrations than sea bass, the former showed significantly lower levels of CYP1A expression. Although bioconcentration ratios were similar between the two species for some PAHs, phenanthrenes and dibenzothiophenes showed selectively higher bioconcentration ratios in flounder, suggesting that this species has a reduced metabolic capacity for these compounds. While consistent with a conserved cardiotoxic mechanism for petrogenic PAHs across diverse marine and freshwater species, these findings indicate that species-specific differences in toxicokinetics can be an important factor underlying species' sensitivity to crude oil.


Assuntos
Bass/embriologia , Linguado/embriologia , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/metabolismo , Bass/metabolismo , Ecotoxicologia/métodos , Embrião não Mamífero , Linguado/metabolismo , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Especificidade da Espécie , Toxicocinética , Poluentes Químicos da Água/farmacocinética
10.
J Hazard Mater ; 477: 135258, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39047565

RESUMO

This study focused on microplastic (MP) contamination originating from ship paint, particularly during the hydroblasting of ship hull, to understand the emission characteristics of MPs into the marine environment. We evaluated paint particles generated from the hydroblasting of an ocean-going vessel based on their number, size, polymer type, and mass. Hydroblasting a vessel produced 4.3 × 1015 particles, predominantly comprising acrylic particles, 99.9 % of which were smaller than 5 mm. Of the 44.1 kg of antifouling (AF) paint particles generated, 36.5 kg consisted of particles smaller than 5 mm, with 18.2 kg being identified as plastic emissions. Furthermore, we calculated the MP emission factor (8.43 g/m2) for hydroblasting on AF paint by dividing the total emission by the wetted surface area (WSA) of the vessel. This factor was then extrapolated by multiplying it with the total WSA of global ships and their hull cleaning frequency to preliminarily estimate the annual global MP emissions. Consequently, a total of 665.6 tons of plastics was generated globally by hydroblasting, with approximately 550.2 tons of these being in the form of MPs. This study highlights the need for developing stricter regulations governing hydroblasting operations and waste disposal practices to protect marine environments from MP pollution.

11.
Mar Pollut Bull ; 200: 116121, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354590

RESUMO

While wastewater discharged from in-water cleaning process of ship hulls on rotifer consistently released into aquatic ecosystem, its detrimental effects on non-target animals are largely unclear. In this study, we provide evidence on detrimental effects of hull cleaning wastewater in the monogonont rotifer Brachionus manjavacas by analyzing biochemical and physiological parameters in its oxidative status, survival, lifespan, growth, fecundity, and population. The wastewater contained high concentrations of metals (Zn and Cu) and metal-based antifoulants (CuPT and ZnPT). Significant oxidative stress was observed in response to two wastewater samples [1) raw wastewater (RW) and 2) mechanical filtrated in the cleaning system (MF)]. Higher detrimental effects in survival, lifespan, fecundity, and population growth for 10 days were measured in the RW-exposed rotifers than those results analyzed in the MF-exposed rotifers. Two growth parameters, lorica length and width were also significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater would have deleterious effects on the maintenance of the rotifer population when they exposed constantly.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Águas Residuárias , Crescimento Demográfico , Ecossistema , Estágios do Ciclo de Vida , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
12.
J Hazard Mater ; 469: 133959, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457977

RESUMO

We conducted a comprehensive assessment involving acute effects on 96-hour survival and biochemical parameters, as well as chronic effects on growth and reproduction spanning three generations of the marine mysid Neomysis awatschensis exposed to filtered wastewater to evaluate the potential impact of ship hull-cleaning wastewater on crustaceans. The analyzed wastewater exhibited elevated concentrations of metals, specifically zinc (Zn) and copper (Cu) and metal-based antifoulants, i.e., Cu pyrithoine (CuPT) and Zn pyrithoine (ZnPT). The results revealed dose-dependent reductions in survival rates, accompanied by a notable increase in oxidative stress, in response to the sublethal values of two wastewater samples: 1) mechanically filtered using the cleaning system (MF) and 2) additionally filtered in the laboratory (LF) for 96 h. Mysids exposed to MF displayed higher mortality than those exposed to LF. Furthermore, mysids subjected to continuous exposure of 0.001% LF across three generations exhibited significant inhibition of the feeding rate, more pronounced growth retardation along with an extended intermolt duration, and a diminished rate of reproduction compared to the control. A noteworthy inhibition of the feeding rate and growth was observed in the first generation exposed only to the LF sample. However, although the reproduction rate was not significantly affected. Collectively, these findings underscore the potential harm posed by sublethal concentrations of wastewater to the health of mysid populations under consistent exposure.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Metais/farmacologia , Crustáceos , Cobre/toxicidade , Zinco
13.
Artigo em Inglês | MEDLINE | ID: mdl-38615807

RESUMO

While wastewater and paint particles discharged from the in-water cleaning process of ship hulls are consistently released into benthic ecosystems, their hazardous effects on non-target animals remain largely unclear. In this study, we provide evidence on acute harmful effects of hull cleaning wastewater in marine polychaete Perinereis aibuhitensis by analyzing physiological and biochemical parameters such as survival, burrowing activity, and oxidative status. Raw wastewater samples were collected during ship hull cleaning processes in the field. Two wastewater samples for the exposure experiment were prepared in the laboratory: 1) mechanically filtered in the in-water cleaning system (MF) and 2) additionally filtered with a 0.45 µm filter in the laboratory (LF). These wastewater samples contained high concentrations of metals (zinc and copper) and metal-based booster biocides (copper pyrithione and zinc pyrithione) compared to those analyzed in seawater. Polycheates were exposed to different concentrations of the two wastewater samples for 96 h. Higher mortality was observed in response to MF compared to LF-exposed polychaetes. Both wastewater samples dose-dependently decreased burrowing activity and AChE activity. Drastic oxidative stress was observed in response to the two wastewater samples. MDA levels were significantly increased by MF and LF samples. Significant GSH depletion was observed with MF exposure, while increased and decreased GSH contents were observed in LF-exposed polychaetes. Enzymatic activities of antioxidant components, catalase, superoxide dismutase, and glutathione S-transferase were significantly modulated by both wastewater samples. These results indicate that even filtered hull cleaning wastewater can have deleterious effects on the health status of polychaetes.


Assuntos
Estresse Oxidativo , Poliquetos , Águas Residuárias , Poluentes Químicos da Água , Animais , Poliquetos/efeitos dos fármacos , Poliquetos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Águas Residuárias/toxicidade , Águas Residuárias/química , Acetilcolinesterase/metabolismo , Desinfetantes/toxicidade , Navios
14.
Fish Shellfish Immunol ; 35(2): 357-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23684809

RESUMO

To clarify the toxic effects of Iranian Heavy Crude Oil (IHCO) from the "Hebei spirit" oil spill, innate immune toxic effects defending on biotransformation pathway have been investigated on fish exposed to IHCO. Juvenile rockfish were exposed to IHCO in gelatin capsules by feeding. The effects on multiple fish biotransformation enzymes (Cytochrome P4501A and glutathione-S-transferase) and the expression level of the several immune response genes, including interleukin-1beta, granulocyte colony-stimulating factor and Cathepsin L, were measured in the liver, spleen and kidney. The tissue-specific expression patterns of these genes demonstrated that the highest expression levels of Cytochrome P4501A, glutathione-S-transferase, interleukin-1beta, granulocyte colony-stimulating factor, interferon stimulated gene 15 and Cathepsin L were found in the liver and that the TNF receptor was high in spleen. The oil-fed fish had significantly higher concentrations of biliary fluorescent metabolites and Cytochrome P4501A expression during the initial stage (12 ∼ 48 h after exposure) than those in the liver and kidney of the sham group. Similarly, the highest mRNA expression levels of interleukin-1beta and granulocyte colony-stimulating factor were detected in the liver at the early stages of exposure (12 h after exposure). Following exposure, the levels of interferon stimulated gene 15 and granulocyte colony-stimulating factor mRNA remained high at 120 h after exposure in the liver but the levels of interleukin-1beta and Cathepsin L gradually decreased to an expression level equal to or less than the sham group. Our data suggest that the innate immune and hepatodetoxification responses in oil-fed fish were induced at the initial stage of exposure to the IHCO at the same time but several immune-related genes decreased to less than that of the sham group after the initial stage of response. Therefore, immune disturbances in fish exposed to IHCO may allow the pathogens, including the infectious diseases, to more easily affect the oil exposed fish.


Assuntos
Citocinas/metabolismo , Peixes/fisiologia , Imunidade Inata , Fígado/enzimologia , Petróleo/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Citocinas/genética , Comportamento Alimentar , Feminino , Peixes/genética , Peixes/imunologia , Inativação Metabólica , Fígado/efeitos dos fármacos , Masculino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Espectrofotometria/veterinária
15.
J Hazard Mater ; 460: 132456, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708650

RESUMO

An increase in the use of ROVs for in-water hull cleaning (IWC) has led to the need to understand the risks to the marine environment posed by the release of IWC effluents. The primary objective of this research is to investigate the characteristics of wastewater generated during IWC, specifically concerning suspended solids (SS) and metal concentrations, and their release rates and total load to the environment. The IWC effluents contain substantial amounts of SS and metals, with Cu and Zn being the most prevalent. These metals are predominantly associated with fine antifouling paint particles, posing a potential risk of secondary pollution upon release into the marine environment. While the treatment systems demonstrated effectiveness in reducing SS and particulate metals, achieving complete removal of dissolved and particulate metals below ambient levels proved to be challenging. To mitigate environmental risks, this study proposes, based on the particle size analysis, the implementation of multistage filtration systems with an optimal filtration pore size for the effluent treatment. In conclusion, we highlight the potential environmental risks of IWC activities. As most metals have a strong affinity towards particles in wastewater, effective removal of particles is essential to alleviate environmental stress at IWC sites.

16.
Mar Pollut Bull ; 191: 114991, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146552

RESUMO

Unmanaged disposal of wastewater produced by underwater hull cleaning equipment (WHCE) is suspected to induce toxic effects to marine organisms because wastewater contains several anti-fouling compounds. To investigate the effects of WHCE on marine copepod, we examined the toxicity on life parameters (e.g. mortality, development, and fecundity) and gene expression changes of Tigriopus japonicus as model organism. Significant mortality and developmental time changes were observed in response to wastewater. No significant differences in fecundity were observed. Transcriptional profiling with differentially expressed genes from WHCE exposed T. japonicus showed WHCE may induce genotoxicity associated genes and pathways. In addition, potentially neurotoxic effects were evident following exposure to WHCE. The findings suggest that wastewater released during hull cleaning should be managed to reduce physiological and molecular deleterious effects in marine organisms.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Águas Residuárias/toxicidade , Fertilidade , Poluentes Químicos da Água/metabolismo
17.
Mar Pollut Bull ; 194(Pt B): 115273, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454603

RESUMO

Environmental spills of in-water hull cleaning wastewater (HCW) containing heavy metals and biocides is inevitable, and the effects of HCW on microalgae are unknown. To investigate this, we conducted microcosm experiments by adding HCW to natural seawater. HCW samples were obtained from two different cleaning methods (soft: sponge, hard: brush), and 5 % or 10 % were added to natural seawater as treatments. Dissolved Cu concentrations were 5 to 10 times higher in the treatments than those in the control. There were significant differences in growth of unattached microalgae depending on HCW dose (chlorophyll a: 34.1 ± 0.8 µg L-1 in control vs. 12.6 ± 4.3 µg L-1 in treatments). Conversely, the biomass of attached microalgae increased with HCW dose, which was associated with most of the nutrient reduction later in the experiment, rather than unattached microalgae. Our findings suggest that HCW can significantly impact microalgal community, especially depending on spill volume.


Assuntos
Microalgas , Águas Residuárias , Clorofila A , Água , Navios , Biomassa
18.
Environ Sci Technol ; 46(12): 6431-7, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22582823

RESUMO

After the Hebei Spirit oil spill (HSOS) in December 2007, mixtures of three types of Middle East crude oil (total 12,547 kL) were stranded along 375 km of coastline in Western Korea. Emergency responses together with 1.3 million volunteers' activity rapidly removed ca. 20% of spilled oil but the lingering oils have been found along the heavily impacted shorelines for more than 4 years. The HSOS was the worst oil spill case in Republic of Korea, and there were many issues and lessons to be shared. In this study, we summarized some of the oil spill environmental forensic issues that were raised after the HSOS. Rapid screening using on-site measurement, long-term monitoring of multimedia, fingerprinting challenges and evaluation of the extent of the submerged oil were introduced, which supported decision making process of oil spill cleanup, mitigation of debates among stakeholders and provided scientific backgrounds for reasonable compensation.


Assuntos
Ciências Forenses , Poluição por Petróleo , Poluentes Químicos da Água/química , República da Coreia
19.
J Hazard Mater ; 438: 129417, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779397

RESUMO

Tire-wear particles (TWPs) are potential source of microplastic (MP) pollution in marine environments. Although the hazardous effects of MPs on marine biota have received considerable attention, the toxicity of TWPs and associated leachates remain poorly understood. Here, to assess the toxicity of TWP leachate and the underlying mechanisms of toxicity, the phenotypic and transcriptomic responses of the rotifer Brachionus plicatilis were assessed with chemistry analysis of a TWP leachate. Although acute toxicity was induced, and a variety of metals and polyaromatic hydrocarbons were detected in the leachate, levels were below the threshold for acute toxicity. The results of particle analysis suggest that the acute toxicity observed in our study is the result of a toxic cocktail of micro- and/or nano-sized TWPs and other additives in TWP leachate. The adverse effects of TWP leachate were associated with differential expression of genes related to cellular processes, stress response, and impaired metabolism, with further oxidative stress responses. Our results imply that TWPs pose a greater threat to marine biota than other plastic particles as they constitute a major source of nano- and microplastics that have synergistic effects with the additives contained in TWP leachate.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Poluição Ambiental , Estresse Oxidativo , Plásticos , Rotíferos/genética , Transcriptoma , Poluentes Químicos da Água/toxicidade
20.
Sci Total Environ ; 807(Pt 3): 151781, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34801494

RESUMO

The central-eastern Yellow Sea is an important region for transporting organic matter (OM) to the Pacific Ocean, however, there is limited information available regarding the characteristics and sources of OM in this area. The present study investigated the concentrations and stable isotopic compositions of carbon (δ13C) and nitrogen (δ15N) for particulate matter and sediment in the central-eastern Yellow Sea during April 2019. The physicochemical properties (i.e., salinity, temperature, fluorescence, and nutrients), size-fractionated phytoplankton biomass (Chl-a), and concentration and fluorescence characteristics of dissolved organic matter (DOM) were also determined. The satellite SST and Chl-a data indicated that mixing cold and warm water masses were observed. Phytoplankton blooms occurred a few days before our sampling campaign. Considering the high concentration of suspended solids in the bottom layer, resuspended sediment caused by tidal currents could be a major source of OM in coastal areas. The δ13C values of particulate organic matter (POM) in the coastal area were higher (-23 to -22‰) than those of OM from terrestrial sources (approximately -28 to -27‰). Instead, the lowest δ13C values were observed in the central part of our study area, where the relative abundance of picophytoplankton was high. These results indicated that phytoplankton-derived OM after phytoplankton spring blooms in the coastal area could be the primary source of OM rather than terrestrial origins. In addition, the source of OM that presented low δ13C values could be picophytoplankton-derived OM. The characteristics of DOM were related to biological processes (mediated by phytoplankton and bacteria) and resuspension of sedimentary organic matter. We did not detect an influx of large amounts of terrestrial OM in coastal sediments. Overall, the source and characteristics of OM appeared to be influenced by the hydrodynamics and the distribution properties of lower trophic-level organisms in the central-eastern Yellow Sea during the spring season.


Assuntos
Hidrodinâmica , Fitoplâncton , Matéria Orgânica Dissolvida , Oceano Pacífico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA