Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(5): 1165, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230317

RESUMO

This publisher's note contains a correction to Opt. Lett. 47, 714 (2022).

2.
Opt Lett ; 47(3): 714-717, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103715

RESUMO

We developed an inter-chip optical link using direct optical wire (DOW) bonding by open-to-air polymerization. An arch-shaped wire was drawn from a tip in a similar way to a metal wire, but the wire was formed from a polymer solution that solidified in the air during wiring. The DOW bonding was examined for silicon photonic chips where grating couplers are integrated for input/output coupling. Cone-shaped studs were formed at the ends of the wire, and their geometry was optimized using finite-difference time-domain simulation to give a mode conversion function. Although the polymer wire had a multimode scale of 7 µm, the wire bonding between the grating couplers showed a relatively low insertion loss of 5.8 dB at a wavelength of 1590 nm compared to a conventional connection using single-mode fiber blocks. It also showed a larger wavelength tolerance within the range of ∼1520-1590 nm. DOW bonding between a grating coupler and a single-mode fiber were also examined to verify the feasibility of out-of-plane connection with edge-coupling devices. The grating-to-fiber wire link also exhibited a large wavelength tolerance.

3.
RSC Adv ; 9(36): 20865-20870, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35515555

RESUMO

We investigated the effects of X-ray irradiation on the electrical characteristics of an amorphous In-Ga-Zn-O (a-IGZO) thin film transistor (TFT). The a-IGZO TFT showed a negative threshold voltage (V TH) shift of -6.2 V after 100 Gy X-ray irradiation. Based on spectroscopic ellipsometry (SE) and X-ray photoelectron spectroscopy (XPS) analysis, we found that the Fermi energy (E F) changes from 2.73 eV to 3.01 eV and that the sub-gap state of D1 and D2 changes near the conduction band minimum (CBM) of the a-IGZO film after X-ray irradiation. These results imply that the negative V TH shift after X-ray irradiation is related to the increase in electron concentration of the a-IGZO TFT active layer. We confirmed that the sources for electron generation during X-ray irradiation are hydrogen incorporation from the adjacent layer or from ambient air to the active layer in the TFT, and the oxygen vacancy dependent persistent photocurrent (PPC) effect. Since both causes are reversible processes involving an activation energy, we demonstrate the V TH shift recovery by thermal annealing.

4.
ACS Nano ; 9(10): 9964-73, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26418767

RESUMO

The photochemical tunability of the charge-transport mechanism in metal-oxide semiconductors is of great interest since it may offer a facile but effective semiconductor-to-metal transition, which results from photochemically modified electronic structures for various oxide-based device applications. This might provide a feasible hydrogen (H)-radical doping to realize the effectively H-doped metal oxides, which has not been achieved by thermal and ion-implantation technique in a reliable and controllable way. In this study, we report a photochemical conversion of InGaZnO (IGZO) semiconductor to a transparent conductor via hydrogen doping to the local nanocrystallites formed at the IGZO/glass interface at room temperature. In contrast to thermal or ionic hydrogen doping, ultraviolet exposure of the IGZO surface promotes a photochemical reaction with H radical incorporation to surface metal-OH layer formation and bulk H-doping which acts as a tunable and stable highly doped n-type doping channel and turns IGZO to a transparent conductor. This results in the total conversion of carrier conduction property to the level of metallic conduction with sheet resistance of ∼16 Ω/□, room temperature Hall mobility of 11.8 cm(2) V(-1) sec(-1), the carrier concentration at ∼10(20) cm(-3) without any loss of optical transparency. We demonstrated successful applications of photochemically highly n-doped metal oxide via optical dose control to transparent conductor with excellent chemical and optical doping stability.

5.
Nanoscale Res Lett ; 9(1): 619, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435832

RESUMO

In this study, InGaZnO (IGZO) thin film transistors (TFTs) with a dual active layer (DAL) structure are fabricated by inserting a homogeneous embedded conductive layer (HECL) in an amorphous IGZO (a-IGZO) channel with the aim of enhancing the electrical characteristics of conventional bottom-gate-structure TFTs. A highly conductive HECL (carrier concentration at 1.6 × 10(13) cm(-2), resistivity at 4.6 × 10(-3) Ω∙cm, and Hall mobility at 14.6 cm(2)/Vs at room temperature) is fabricated using photochemical H-doping by irradiating UV light on an a-IGZO film. The electrical properties of the fabricated DAL TFTs are evaluated by varying the HECL length. The results reveal that carrier mobility increased proportionally with the HECL length. Further, a DAL TFT with a 60-µm-long HECL embedded in an 80-µm-long channel exhibits comprehensive and outstanding improvements in its electrical properties: a saturation mobility of 60.2 cm(2)/Vs, threshold voltage of 2.7 V, and subthreshold slope of 0.25 V/decade against the initial values of 19.9 cm(2)/Vs, 4.7 V, and 0.45 V/decade, respectively, for a TFT without HECL. This result confirms that the photochemically H-doped HECL significantly improves the electrical properties of DAL IGZO TFTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA