Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 15(24): 16285-91, 2007 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19550917

RESUMO

Thin films composed of SiO(2) nanorods or nanoporous SiO(2) (np- SiO(2)) are attractive for use as a low refractive index material in various types of optical coatings. However, the material properties of these films are unstable because of the high porosity of the films. This is particularly apparent in dry versus humid atmospheres where both the refractive index and coefficient of thermal expansion (CTE) vary dramatically. In this article, we demonstrate that np-SiO(2) can be encapsulated by depositing Al(2)O(3) with Atomic Layer Deposition (ALD), stabilizing these properties. In addition, this encapsulation ability is demonstrated successfully in a 4-pair distributed Bragg reflector (DBR) design. It is hoped that this technique will be useful in patterning specific regions of a film for optical and mechanical stability while other portions are ambient-interactive for sensing.

2.
Opt Lett ; 34(14): 2162-4, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19823535

RESUMO

Optical coating degradation under laser irradiation can take several forms. Perhaps the most common that is not due to particulates is thermal breakdown, caused by heating of the coating to a catastrophic failure induced by local melting, delamination, evaporation, or some other change. We demonstrate that micromachined dielectric membranes show strong differences in their hydroxyl signatures as measured by Fourier-transform IR spectroscopy. The changes correspond to regions of high fluence (3200 J/cm2) from a Nd:YAG laser. It is found that the absorption peaks associated with OH decrease after laser treatment, indicating a reduction in the number of film hydroxyl groups.

3.
Opt Lett ; 34(13): 1958-60, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571965

RESUMO

A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA