RESUMO
In this paper, a capacitively-fed, ultra-wideband (UWB), and low-profile monocone antenna is proposed for vehicle-to-everything (V2X) applications. The proposed antenna consists of a monocone design with an inner set of vias. Additionally, an outer ring is added with a small gap from the monocone and shorted with six folded wires of different lengths to extend the operating band. The proposed antenna covers the frequency range from 0.75 GHz to 7.6 GHz and has a 164% fractional bandwidth, with a gain value varying between 2 and 10 dBi. The dimensions of the antenna are 0.37λL × 0.37λL × 0.067λL. The antenna was fabricated using a 3D printer with low-cost polylactic acid plastic (PLA) material and then sprayed with aerosol copper nanoparticles. The efficiency was approximately 90% throughout the frequency bands of interest. Finally, the proposed antenna was installed on a vehicle and tested with an OBU (onboard unit) and a RSU (roadside unit) in the field. The results show a longer wireless communication range for V2X applications.
Assuntos
Comunicação , Nanopartículas , Cobre , PlásticosRESUMO
In this paper, the far-field energy harvesting system for self-sustainable wireless autonomous sensor application is presented. The proposed autonomous sensor system consists of a wireless power supplier (active antenna) and far-field energy harvesting technology-enabled autonomous battery-less sensors. The wireless power supplier converts solar power to electromagnetic power in order to transfer power to multiple autonomous sensors wirelessly. The autonomous sensors have far-field energy harvesters which convert transmitted RF power to voltage regulated DC power to power-on the sensor system. The hybrid printing technology was chosen to build the autonomous sensors and the wireless power suppliers. Two popular hybrid electronics technologies (direct nano-particle printing and indirect copper thin film printing techniques) are discussed in detail.
RESUMO
The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.
RESUMO
In this study, a low-cost continuous wave (CW) radar system with 3D-printed high-gain horn antennas called VitRad is proposed for human vital sign detection. The CW radar consists of 3D-printed high-gain horn antennas, commercially available low-cost surface-mounting devices, and monolithic ICs. The CW radar system operates at a frequency band of 5.8 GHz, and the backscattered I/Q data are collected using a digital storage oscilloscope (DSO). The data is processed on MATLAB to determine vital sign information such as respiratory and heartbeat rates. It is demonstrated that the proposed CW radar system for vital-sign monitoring can effectively measure respiratory and heartbeat rates.