Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 578(7796): 600-604, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051586

RESUMO

Coeliac disease is a complex, polygenic inflammatory enteropathy caused by exposure to dietary gluten that occurs in a subset of genetically susceptible individuals who express either the HLA-DQ8 or HLA-DQ2 haplotypes1,2. The need to develop non-dietary treatments is now widely recognized3, but no pathophysiologically relevant gluten- and HLA-dependent preclinical model exists. Furthermore, although studies in humans have led to major advances in our understanding of the pathogenesis of coeliac disease4, the respective roles of disease-predisposing HLA molecules, and of adaptive and innate immunity in the development of tissue damage, have not been directly demonstrated. Here we describe a mouse model that reproduces the overexpression of interleukin-15 (IL-15) in the gut epithelium and lamina propria that is characteristic of active coeliac disease, expresses the predisposing HLA-DQ8 molecule, and develops villous atrophy after ingestion of gluten. Overexpression of IL-15 in both the epithelium and the lamina propria is required for the development of villous atrophy, which demonstrates the location-dependent central role of IL-15 in the pathogenesis of coeliac disease. In addition, CD4+ T cells and HLA-DQ8 have a crucial role in the licensing of cytotoxic T cells to mediate intestinal epithelial cell lysis. We also demonstrate a role for the cytokine interferon-γ (IFNγ) and the enzyme transglutaminase 2 (TG2) in tissue destruction. By reflecting the complex interaction between gluten, genetics and IL-15-driven tissue inflammation, this mouse model provides the opportunity to both increase our understanding of coeliac disease, and develop new therapeutic strategies.


Assuntos
Doença Celíaca/imunologia , Doença Celíaca/patologia , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Interleucina-15/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Antígenos HLA-DQ/genética , Humanos , Interferon gama/imunologia , Interleucina-15/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo
2.
Nature ; 557(7706): 580-584, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769727

RESUMO

Somatic mutations in tet methylcytosine dioxygenase 2 (TET2), which encodes an epigenetic modifier enzyme, drive the development of haematopoietic malignancies1-7. In both humans and mice, TET2 deficiency leads to increased self-renewal of haematopoietic stem cells with a net developmental bias towards the myeloid lineage1,4,8,9. However, pre-leukaemic myeloproliferation (PMP) occurs in only a fraction of Tet2-/- mice8,9 and humans with TET2 mutations1,3,5-7, suggesting that extrinsic non-cell-autonomous factors are required for disease onset. Here we show that bacterial translocation and increased interleukin-6 production, resulting from dysfunction of the small-intestinal barrier, are critical for the development of PMP in mice that lack Tet2 expression in haematopoietic cells. Furthermore, in symptom-free Tet2-/- mice, PMP can be induced by disrupting intestinal barrier integrity, or in response to systemic bacterial stimuli such as the toll-like receptor 2 agonist. PMP was reversed by antibiotic treatment and failed to develop in germ-free Tet2-/- mice, which illustrates the importance of microbial signals in the development of this condition. Our findings demonstrate the requirement for microbial-dependent inflammation in the development of PMP and provide a mechanistic basis for the variation in PMP penetrance observed in Tet2-/- mice. This study will prompt new lines of investigation that may profoundly affect the prevention and management of haematopoietic malignancies.


Assuntos
Doenças Assintomáticas , Fenômenos Fisiológicos Bacterianos , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Leucemia/microbiologia , Leucemia/patologia , Proteínas Proto-Oncogênicas/deficiência , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos/imunologia , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Vida Livre de Germes , Inflamação/microbiologia , Interleucina-6/imunologia , Mucosa Intestinal/metabolismo , Lactobacillus/química , Lactobacillus/citologia , Lactobacillus/imunologia , Masculino , Camundongos , Penetrância , Permeabilidade , Proteínas Proto-Oncogênicas/genética , Receptor 2 Toll-Like/agonistas
3.
Am J Gastroenterol ; 111(6): 879-90, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27045926

RESUMO

OBJECTIVES: Celiac disease (CD)-associated duodenal dysbiosis has not yet been clearly defined, and the mechanisms by which CD-associated dysbiosis could concur to CD development or exacerbation are unknown. In this study, we analyzed the duodenal microbiome of CD patients. METHODS: The microbiome was evaluated in duodenal biopsy samples of 20 adult patients with active CD, 6 CD patients on a gluten-free diet, and 15 controls by DNA sequencing of 16S ribosomal RNA libraries. Bacterial species were cultured, isolated and identified by mass spectrometry. Isolated bacterial species were used to infect CaCo-2 cells, and to stimulate normal duodenal explants and cultured human and murine dendritic cells (DCs). Inflammatory markers and cytokines were evaluated by immunofluorescence and ELISA, respectively. RESULTS: Proteobacteria was the most abundant and Firmicutes and Actinobacteria the least abundant phyla in the microbiome profiles of active CD patients. Members of the Neisseria genus (Betaproteobacteria class) were significantly more abundant in active CD patients than in the other two groups (P=0.03). Neisseria flavescens (CD-Nf) was the most abundant Neisseria species in active CD duodenum. Whole-genome sequencing of CD-Nf and control-Nf showed genetic diversity of the iron acquisition systems and of some hemoglobin-related genes. CD-Nf was able to escape the lysosomal compartment in CaCo-2 cells and to induce an inflammatory response in DCs and in ex-vivo mucosal explants. CONCLUSIONS: Marked dysbiosis and an abundance of a peculiar CD-Nf strain characterize the duodenal microbiome in active CD patients thus suggesting that the CD-associated microbiota could contribute to the many inflammatory signals in this disorder.


Assuntos
Doença Celíaca/microbiologia , Duodeno/microbiologia , Disbiose/microbiologia , Metagenômica , Neisseria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Adulto , Biópsia , Células CACO-2 , Dieta Livre de Glúten , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Itália , Masculino , Microbiota , Neisseria/classificação , Proteobactérias/classificação , Proteobactérias/isolamento & purificação
4.
Antimicrob Agents Chemother ; 58(2): 966-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277029

RESUMO

Antibiotic resistance among highly pathogenic strains of bacteria and fungi is a growing concern in the face of the ability to sustain life during critical illness with advancing medical interventions. The longer patients remain critically ill, the more likely they are to become colonized by multidrug-resistant (MDR) pathogens. The human gastrointestinal tract is the primary site of colonization of many MDR pathogens and is a major source of life-threatening infections due to these microorganisms. Eradication measures to sterilize the gut are difficult if not impossible and carry the risk of further antibiotic resistance. Here, we present a strategy to contain rather than eliminate MDR pathogens by using an agent that interferes with the ability of colonizing pathogens to express virulence in response to host-derived and local environmental factors. The antivirulence agent is a phosphorylated triblock high-molecular-weight polymer (here termed Pi-PEG 15-20) that exploits the known properties of phosphate (Pi) and polyethylene glycol 15-20 (PEG 15-20) to suppress microbial virulence and protect the integrity of the intestinal epithelium. The compound is nonmicrobiocidal and appears to be highly effective when tested both in vitro and in vivo. Structure functional analyses suggest that the hydrophobic bis-aromatic moiety at the polymer center is of particular importance to the biological function of Pi-PEG 15-20, beyond its phosphate content. Animal studies demonstrate that Pi-PEG prevents mortality in mice inoculated with multiple highly virulent pathogenic organisms from hospitalized patients in association with preservation of the core microbiome.


Assuntos
Infecções Bacterianas/prevenção & controle , Candidíase/prevenção & controle , Citostáticos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Sepse/prevenção & controle , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Animais , Infecções Bacterianas/microbiologia , Infecções Bacterianas/mortalidade , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/mortalidade , Citostáticos/síntese química , Farmacorresistência Bacteriana Múltipla , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/patogenicidade , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos/química , Polietilenoglicóis/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Sepse/microbiologia , Análise de Sobrevida , Virulência
7.
Nat Commun ; 11(1): 2354, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393794

RESUMO

Death due to sepsis remains a persistent threat to critically ill patients confined to the intensive care unit and is characterized by colonization with multi-drug-resistant healthcare-associated pathogens. Here we report that sepsis in mice caused by a defined four-member pathogen community isolated from a patient with lethal sepsis is associated with the systemic suppression of key elements of the host transcriptome required for pathogen clearance and decreased butyrate expression. More specifically, these pathogens directly suppress interferon regulatory factor 3. Fecal microbiota transplant (FMT) reverses the course of otherwise lethal sepsis by enhancing pathogen clearance via the restoration of host immunity in an interferon regulatory factor 3-dependent manner. This protective effect is linked to the expansion of butyrate-producing Bacteroidetes. Taken together these results suggest that fecal microbiota transplantation may be a treatment option in sepsis associated with immunosuppression.


Assuntos
Transplante de Microbiota Fecal , Imunidade , Sepse/imunologia , Sepse/terapia , Animais , Ácido Butírico/metabolismo , Fezes/química , Microbioma Gastrointestinal , Trato Gastrointestinal/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Transdução de Sinais , Transcrição Gênica
8.
mBio ; 10(4)2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363025

RESUMO

Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum ß-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota.IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen.


Assuntos
Antibacterianos/uso terapêutico , Dieta Ocidental/efeitos adversos , Sepse/tratamento farmacológico , Sepse/cirurgia , Animais , Proteína C-Reativa/metabolismo , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Sepse/sangue , Sepse/microbiologia
9.
Science ; 356(6333): 44-50, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386004

RESUMO

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Assuntos
Antígenos/imunologia , Doença Celíaca/imunologia , Doença Celíaca/virologia , Glutens/imunologia , Inflamação/virologia , Infecções por Reoviridae/complicações , Infecções por Reoviridae/imunologia , Células Th1/imunologia , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Engenharia Genética , Humanos , Tolerância Imunológica , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Intestinos/imunologia , Intestinos/patologia , Intestinos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Reoviridae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA