RESUMO
The lower respiratory system serves as the target and barrier for beta-coronavirus (beta-CoV) infections. In this study, we explored beta-CoV infection dynamics in human bronchial epithelial (HBE) organoids, focusing on HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2. Utilizing advanced organoid culture techniques, we observed robust replication for all beta-CoVs, particularly noting that SARS-CoV-2 reached peak viral RNA levels at 72 h postinfection. Through comprehensive transcriptomic analysis, we identified significant shifts in cell population dynamics, marked by an increase in goblet cells and a concurrent decrease in ciliated cells. Furthermore, our cell tropism analysis unveiled distinct preferences in viral targeting: HCoV-OC43 predominantly infected club cells, while SARS-CoV had a dual tropism for goblet and ciliated cells. In contrast, SARS-CoV-2 primarily infected ciliated cells, and MERS-CoV showed a marked affinity for goblet cells. Host factor analysis revealed the upregulation of genes encoding viral receptors and proteases. Notably, HCoV-OC43 induced the unfolded protein response pathway, which may facilitate viral replication. Our study also reveals a complex interplay between inflammatory pathways and the suppression of interferon responses during beta-CoV infections. These findings provide insights into host-virus interactions and antiviral defense mechanisms, contributing to our understanding of beta-CoV infections in the respiratory tract.
Assuntos
Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Linhagem Celular , Brônquios , SARS-CoV-2 , Interferons , OrganoidesRESUMO
Triacylglycerols (TAGs) are the storage oils of plant seeds, and these lipids provide energy for seed germination and valuable oils for human consumption. Three diacylglycerol acyltransferases (DGAT1, DGAT2, and DGAT3) and phospholipid:diacylglycerol acyltransferases participate in the biosynthesis of TAGs. DGAT1 and DGAT2 participate in the biosynthesis of TAGs through the endoplasmic reticulum (ER) pathway. In this study, we functionally characterized CsDGAT1 and CsDGAT2 from camelina (Camelina sativa). Green fluorescent protein-fused CsDGAT1 and CsDGAT2 localized to the ER when transiently expressed in Nicotiana benthamiana leaves. To generate Csdgat1 and Csdgat2 mutants using the CRISPR/Cas9 system, camelina was transformed with a binary vector carrying Cas9 and the respective guide RNAs targeting CsDGAT1s and CsDGAT2s via the Agrobacterium-mediated floral dip method. The EDD1 lines had missense and nonsense mutations in the CsDGAT1 homoeologs, suggesting that they retained some CsDGAT1 function, and their seeds showed decreased eicosaenoic acid (C20:1) contents and increased C18:3 contents compared to the wild type (WT). The EDD2 lines had a complete knockout of all CsDGAT2 homoeologs and a slightly decreased C18:3 content compared to the WT. In conclusion, CsDGAT1 and CsDGAT2 have a small influence on the seed oil content and have an acyl preference for C20:1 and C18:3, respectively. This finding can be applied to develop oilseed plants containing high omega-3 fatty acids or high oleic acid.
Assuntos
Brassicaceae , Diacilglicerol O-Aciltransferase , Ácidos Graxos , Proteínas de Plantas , Sementes , Ácidos Graxos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Diacilglicerol O-Aciltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Sementes/metabolismo , Sementes/genética , Brassicaceae/genética , Brassicaceae/metabolismo , Sistemas CRISPR-Cas , Triglicerídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Mutação , Edição de GenesRESUMO
Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.
Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de DoençaRESUMO
This study was conducted to examine the effect of porcine placenta extract mixture (pPEM, enzymatic/acidic extract = 1/3) on alcoholic hepatotoxicity after pPEM dosing with alcohol in rats. The experimental groups were normal, control, silymarin, three pPEM (590, 1771, and 2511 mg/kg/day, po), and silymarin (100 mg/kg/day, po) groups (n = 10). Alcoholic hepatotoxicity was caused by a liquid ethanol diet for 4 weeks. The effect of pPEM and silymarin on alcoholic hepatotoxicity was evaluated by serology, hepatic ADH and ALDH activities, and histopathological findings. After oral dosing with alcohol for 4 weeks, ALT and AST were significantly increased to 33.7 â 115.6 and 81.37 â 235.0 in the alcohol group, respectively. These levels were decreased significantly to 83.9 and 126.7 in the silymarin group and dose-dependently to 73.6-56.9 and 139.2-122.8 in all pPEM groups. Hepatic ADH and ALDH might have been increased in the control and not in the silymarin and pPEM groups for hepatic ADH. All pPEM groups exhibited no effects on hepatic ALDH except for the high pPEM group. Mild inflammation and fatty lesions were observed in the alcohol group and were attenuated in the silymarin and pPEM groups. As a results, the pPEM showed protective activities against alcoholic hepatotoxicity on the serological markers, hepatic ADH and ALDH, and pathological findings.
RESUMO
Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Matriz Extracelular/enzimologia , Metabolismo dos Lipídeos , Cirrose Hepática Experimental/enzimologia , Fígado/enzimologia , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Sirtuína 1/metabolismo , Animais , Tetracloreto de Carbono , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Progressão da Doença , Matriz Extracelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de SinaisRESUMO
Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.
Assuntos
Carcinoma Hepatocelular/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/imunologia , Proteínas de Membrana/fisiologia , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Owing to the rapid spread of antibiotic resistance among Staphylococcus species, effective and low-risk alternatives to antibiotics are being actively searched. Thymol (THO), the most abundant component of the oil extracted from thyme, can be considered as a natural antibacterial alternative. However, the low antibacterial activity and non-selectivity of THO limit its usage as a universal anti-Staphylococcus agent. Herein, we report the bioconjugation of THO with ZnO nanoparticle (ZO), which resulted in the TZ nanocomposite (NC), as a potent and selective antibacterial agent against Staphylococcus species, particularly S. epidermidis. The cell-free supernatant (CFS) of ATCC 25923 cultures was employed for the production of TZ NC. Successful production of TZ NC was confirmed via X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) studies. TZ NC had selective efficacy against Staphylococcus species, with MIC values 2-32-fold lower than THO. The antibacterial mechanisms of TZ NC are proposed to involve membrane rupture, suppression of biofilm formation, and modulation of new cell wall and protein-synthesis-associated cellular pathways. Its biocompatibility against HCT116 cells was also checked. Our findings suggest that the TZ nanocomposite could improve the selectivity and bactericidal activity of THO against target species.
Assuntos
Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus , Timol/farmacologia , Difração de Raios X , Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologiaRESUMO
BACKGROUND/AIMS: High-volume plasma exchange (HVPE), defined as an exchange of 8 to 12 L per day per procedure or 15% of the ideal body weight with fresh frozen plasma, has shown promising results in improving the survival of patients with acute liver failure (ALF). However, clinical evidence is limited. The aim of this study was to report our initial experience using HVPE as a bridge treatment in patients with ALF. METHODS: We retrospectively reviewed 32 consecutive patients awaiting liver transplantation (LT) due to ALF between 2013 and 2020 at Samsung Medical Center in Korea. HVPE has been used for patients with ALF since May 2016 at our institution. RESULTS: During the study period, 16 patients received HVPE. After HVPE, coagulopathies (INR, 4.46 [2.32-6.02] vs 1.48 [1.33-1.76], P < .05), total bilirubin (22.6 [9.1-26.4] vs 8.9 [5.6-11.3], P < .05), alanine aminotransferase (506 [341-1963] vs 120 [88-315], P < .05), and ammonia levels (130.6 [123.7-143.8] vs 98.2 [84.2-116.5], P < .05) were improved. Improvement in the hepatic encephalopathy grade was observed in four patients. Among 16 patients who received HVPE, 12 patients were bridged to LT, and three patients recovered spontaneously. The overall survival was 94% and 69%, respectively at 30 days in patients who received and did not receive HVPE (P = .068). Among 18 patients with high chronic liver failure-sequential organ failure assessment scores (≥13), the overall survival was significantly better for those who received HVPE than for those who did not (91% vs 29%, respectively, at 30 days, P < .05). CONCLUSIONS: Our initial clinical experience with HVPE suggests that HVPE can be a viable option in improving the outcomes of patients presenting with ALF.
Assuntos
Falência Hepática Aguda/terapia , Troca Plasmática/métodos , Adulto , Feminino , Humanos , Falência Hepática Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
BACKGROUND: Human placenta extract (HPE) has been used to treat a number of liver diseases. Porcine placenta is relatively safe and has been reported to have similar immune effects to HPE and used as its alternative. This study evaluates the effect of enzymatic porcine placental extract (EPPE, Uni-Placenta®) on alcohol pharmacokinetics in rat. METHODS: This study was designed to determine the effect of single-dose EPPE on the pharmacokinetics of alcohol and liver function. Results were based on serum alcohol and acetaldehyde concentrations and activities of hepatic and gastric ADH and ALDH in rats. RESULTS: The hepatic ADH in alcohol group was significantly increased and it may be enzyme-induction by alcohol. The hepatic ALDH and gastric ADH were not changed, but gastric ALDH was significantly decreased only in the high-dose EPPE group. In the alcohol pharmacokinetics parameters, the AUC was 44.5 mMâh in the alcohol group. Otherwise, AUCs of low, middle, high, and silymarin groups were significantly decreased. Cmax was reached at 1 hour and then gradually decreased to 63% and 43% in the middle and high groups at 3 hours, respectively, and to 92% in the low groups. The pharmacokinetics and serum concentrations of acetaldehyde showed no differences between EPPE groups except the silymarin group. No histologic changes were seen in any group. CONCLUSIONS: The single-dose EPPE (0.5 to 2.5 g/kg) suppressed absorption of alcohol in the gastrointestinal tract. This may be useful in preventing hangover effects and toxicity after drinking alcohol and may also preserve liver health after alcohol ingestion.
Assuntos
Etanol/farmacocinética , Fígado/efeitos dos fármacos , Extratos Placentários/administração & dosagem , Acetaldeído/sangue , Álcool Desidrogenase/análise , Aldeído Desidrogenase/análise , Animais , Etanol/sangue , Fígado/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley , Estômago/enzimologia , SuínosRESUMO
OBJECTIVES: The present study examined self-reports and informant reports of cognitive function and discrepancies between the two reporting methods in healthy controls (HC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and very mild Alzheimer disease (AD) using three questionnaires. METHODS: The study included a total of 300 individuals (mean age: 74.4 ± 5.7 y), including 130 HC, 70 SCD, 51 MCI, and 49 very mild AD patients. Self-ratings and informant ratings of cognitive function were assessed using the Korean Dementia Screening Questionnaire-Cognition (KDSQ-C), AD8, and Subjective Memory Complaints Questionnaire (SMCQ). Awareness of cognitive functioning was measured on the basis of the discrepancy scores between self-reports and informant reports. RESULTS: Group comparisons on questionnaire scores adjusting for age, education, and depressive symptoms showed that self-reports were lowest in HC than other groups, with no differences between SCD and MCI groups. Informant reports were lower in SCD than in MCI, while discrepancy scores were higher in SCD than in MCI (P < .001 for KDSQ-C and SMCQ; P = .076 for AD8). There were no differences in self-reports, informant reports, and discrepancy scores between MCI and AD groups. CONCLUSIONS: These results support the usefulness of informant-reported cognitive functioning to classify MCI among elderly with subjective cognitive complaints. In addition, discrepancies between self-reports and informant reports demonstrate that overestimation and underestimation of cognitive function may serve as a clinical indicator of SCD and MCI across the cognitive continuum, respectively.
Assuntos
Doença de Alzheimer/psicologia , Conscientização/fisiologia , Cognição/fisiologia , Disfunção Cognitiva/psicologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Autoavaliação Diagnóstica , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Autorrelato , Inquéritos e QuestionáriosRESUMO
BACKGROUND: Korea has a periodic general health check-up program that uses the Korean Dementia Screening Questionnaire-Cognition (KDSQ-C) as a cognitive dysfunction screening tool. The Alzheimer Disease 8 (AD8) and Subjective Memory Complaints Questionnaire (SMCQ) are also used in clinical practice. We compared the diagnostic ability of these screening questionnaires for cognitive impairment when completed by participants and their caregivers. Hence, we aimed to evaluate whether the SMCQ or AD8 is superior to the KDSQ-C and can be used as its replacement. METHODS: A total of 420 participants over 65 years and their informants were recruited from 11 hospitals for this study. The patients were grouped into normal cognition, mild cognitive impairment, and dementia subgroups. The KDSQ-C, AD8, and SMCQ were completed separately by participants and their informants. RESULTS: A receiver operating characteristic analysis of questionnaire scores completed by participants showed that the areas under the curve (AUCs) for the KDSQ-C, AD8, and SMCQ for diagnosing dementia were 0.75, 0.8, and 0.73, respectively. Regarding informant-completed questionnaires, the AD8 (AUC of 0.93), KDSQ-C (AUC of 0.92), and SMCQ (AUC of 0.92) showed good discriminability for dementia, with no differences in discriminability between the questionnaires. CONCLUSION: When an informant-report is possible, we recommend that the KDSQ-C continues to be used in national medical check-ups as its discriminability for dementia is not different from that of the AD8 or SMCQ. Moreover, consistent data collection using the same questionnaire is important. When an informant is not available, either the KDSQ-C or AD8 may be used. However, in the cases of patient-reports, discriminability is lower than that for informant-completed questionnaires.
Assuntos
Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Demência/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Cognição/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Curva ROC , República da Coreia , Autorrelato , Inquéritos e QuestionáriosRESUMO
Previously a scalable and extrusion-free method has been developed for efficient liposomal encapsulation of DNA by twice stepwise mixing of lipids in ethanol and DNA solution using T-shape mixing chamber. In this study, we prepared nanoliposomes encapsulating siRNA by simply discontinuous mixing of lipids in ethanol/ether/water mixture and acidic siRNA solution without use of special equipment. The simple mixing siRNA/liposomal particles (siRNA/SMLs) prepared using ethanol/ether/water (3:1:1) mixture showed 120.4⯱â¯20.2â¯nm particle size, 0.174⯱â¯0.033 polydispersity and 86.5⯱â¯2.76% siRNA encapsulation rate. In addition, the SMLs almost completely protected the encapsulated siRNA from RNase A digestion. Coupling of anti-human epidermal growth factor receptor (EGFR) Fab' to siRNA/SMLs enhanced EGFR-specific cell penetration of SMLs and induced siRNA dependent gene silencing. Unexpectedly, the Cy5.5-labeled Fab' showed almost no in vivo targeting to the xenografted A549 tumors in SCID-NOD mice. However, multiple injection of the unmodified siRNA/SMLs accumulated in the tumors and induced siRNA-dependent in vivo gene silencing. These results demonstrate that the siRNA/SMLs can be used as a siRNA delivery tool for gene therapy.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipossomos , Nanoestruturas , RNA Interferente Pequeno/administração & dosagem , Animais , Composição de Medicamentos , Receptores ErbB/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Células NIH 3T3 , Proteínas de Neoplasias/antagonistas & inibidores , Tamanho da Partícula , Interferência de RNA , RNA Interferente Pequeno/farmacocinética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
RESUMO
Although BC200 RNA is best known as a neuron-specific non-coding RNA, it is overexpressed in various cancer cells. BC200 RNA was recently shown to contribute to metastasis in several cancer cell lines, but the underlying mechanism was not understood in detail. To examine this mechanism, we knocked down BC200 RNA in cancer cells, which overexpress the RNA, and examined cell motility, profiling of ribosome footprints, and the correlation between cell motility changes and genes exhibiting altered ribosome profiles. We found that BC200 RNA knockdown reduced cell migration and invasion, suggesting that BC200 RNA promotes cell motility. Our ribosome profiling analysis identified 29 genes whose ribosomal occupations were altered more than 2-fold by BC200 RNA knockdown. Many (> 30%) of them were directly or indirectly related to cancer progression. Among them, we focused on S100A11 (which showed a reduced ribosome footprint) because its expression was previously shown to increase cellular motility. S100A11 was decreased at both the mRNA and protein levels following knockdown of BC200 RNA. An actinomycin-chase experiment showed that BC200 RNA knockdown significantly decreased the stability of the S100A11 mRNA without changing its transcription rate, suggesting that the downregulation of S100A11 was mainly caused by destabilization of its mRNA. Finally, we showed that the BC200 RNA-knockdown-induced decrease in cell motility was mainly mediated by S100A11. Together, our results show that BC200 RNA promotes cell motility by stabilizing S100A11 transcripts.
Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , Proteínas S100/química , Proteínas S100/genética , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Células MCF-7 , Invasividade Neoplásica , Estabilidade de RNA , RNA Mensageiro/química , Proteínas S100/metabolismoRESUMO
UNLABELLED: Neuraminidase inhibitors (NAIs) have been widely used to control influenza virus infection, but their increased use could promote the global emergence of resistant variants. Although various mutations associated with NAI resistance have been identified, the amino acid substitutions that confer multidrug resistance with undiminished viral fitness remain poorly understood. We therefore screened a known mutation(s) that could confer multidrug resistance to the currently approved NAIs oseltamivir, zanamivir, and peramivir by assessing recombinant viruses with mutant NA-encoding genes (catalytic residues R152K and R292K, framework residues E119A/D/G, D198N, H274Y, and N294S) in the backbones of the 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza (HPAI) H5N1 viruses. Of the 14 single and double mutant viruses recovered in the backbone of pH1N1, four variants (E119D, E119A/D/G-H274Y) exhibited reduced inhibition by all of the NAIs and two variants (E119D and E119D-H274Y) retained the overall properties of gene stability, replicative efficiency, pathogenicity, and transmissibility in vitro and in vivo. Of the nine recombinant H5N1 viruses, four variants (E119D, E119A/D/G-H274Y) also showed reduced inhibition by all of the NAIs, though their overall viral fitness was impaired in vitro and/or in vivo. Thus, single mutations or certain combination of the established mutations could confer potential multidrug resistance on pH1N1 or HPAI H5N1 viruses. Our findings emphasize the urgency of developing alternative drugs against influenza virus infection. IMPORTANCE: There has been a widespread emergence of influenza virus strains with reduced susceptibility to neuraminidase inhibitors (NAIs). We screened multidrug-resistant viruses by studying the viral fitness of neuraminidase mutants in vitro and in vivo. We found that recombinant E119D and E119A/D/G/-H274Y mutant viruses demonstrated reduced inhibition by all of the NAIs tested in both the backbone of the 2009 H1N1 pandemic (pH1N1) and highly pathogenic avian influenza H5N1 viruses. Furthermore, E119D and E119D-H274Y mutants in the pH1N1 background maintained overall fitness properties in vitro and in vivo. Our study highlights the importance of vigilance and continued surveillance of potential NAI multidrug-resistant influenza virus variants, as well as the development of alternative therapeutics.
Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Inibidores Enzimáticos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Neuraminidase/genética , Neuraminidase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ácidos Carbocíclicos , Animais , Linhagem Celular , Ciclopentanos/farmacologia , Instabilidade Genômica , Guanidinas/farmacologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Virus da Influenza A Subtipo H5N1/enzimologia , Cinética , Camundongos , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Neuraminidase/antagonistas & inibidores , Oseltamivir/farmacologia , Proteínas Virais/antagonistas & inibidores , Virulência , Replicação Viral , Zanamivir/farmacologiaRESUMO
Epithelial-mesenchymal transition (EMT) is an important process implicated in tumor invasion and metastasis. Twist1 is a transcription factor that induces EMT, including E-cadherin suppression and cancer cell migration and invasion; hence it promotes cancer metastasis. Twist1 directly or indirectly regulates the expression of various genes and cellular functions involved in cancer progression. However, the underlying mechanisms remain largely unknown. In this study, we investigated the molecular basis for Twist1-mediated invasion and EMT. In human cancer cells, Twist1 was found to directly upregulate transcription of the mesenchymal gene integrin α5 in an E-box-independent, but activating protein-1 (AP-1) element-dependent, manner. Twist1 activated the integrin α5 promoter by interacting with and activating the transcription factor AP-1, composed of c-Jun and activating transcription factor-2 (ATF-2); it also enhanced the nuclear presence of ATF-2. AP-1 was critical for Twist1-induced cancer cell invasion, primarily through the induction of integrin α5, which activated c-Jun N-terminal kinase and focal adhesion kinase-signaling activities. Using data from The Cancer Genome Atlas, we found that Twist1 expression positively correlates with integrin α5 expression in human colorectal cancers. These findings suggest that cooperation between Twist1 and AP-1 represents a novel mechanism for EMT and tumor invasiveness. This study supports further investigation into the molecular basis underlying the diverse Twist1-mediated functions that occur during tumor progression.
Assuntos
Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , Integrina alfa5/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa5/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Fator de Transcrição AP-1/genética , Proteína 1 Relacionada a Twist/genética , Regulação para CimaRESUMO
An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-ß activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.
Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Doenças das Aves Domésticas/prevenção & controle , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Galinhas , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H9N2/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/administração & dosagem , Proteínas não Estruturais Virais/genéticaRESUMO
Epithelial-mesenchymal transition (EMT) is a process implicated in invasion and metastasis. EMT is characterized by repression of epithelial markers and induction of mesenchymal markers. ZEB2 is a transcriptional repressor of E-cadherin, leading to EMT. Previously, we have shown that ZEB2 directly upregulates integrin α5 transcription by cooperating with the transcription factor Sp1. In this study, we investigated the precise mechanism by which ZEB2 modulates invasion and EMT events and the role of Sp1 in ZEB2-induced invasion. We found that ZEB2 directly induced cadherin-11 transcription in an Sp1-dependent, but Smad- and E-box-independent, manner and repressed E-cadherin expression in an Sp1- and Smad-independent manner, leading to cadherin switch. Furthermore, ZEB2 upregulated Sp1 by enhancing Sp1 protein stability, and Sp1 was found to be critical for ZEB2-induced cancer cell invasion, mainly through induction of cadherin-11 and integrin α5. Expression levels of cadherin-11 and integrin α5 were interdependent and both modulated c-Jun N-terminal kinase-signaling activity and invasion. Immunofluorescence analysis showed that nuclear expression of ZEB2 was positively correlated with Sp1 expression in human colorectal cancers. Together, these findings demonstrate a previously unrecognized interplay between ZEB2, Sp1, cadherin-11 and integrin α5 that is, probably, significant in tumor progression and metastasis.
Assuntos
Caderinas/genética , Movimento Celular , Neoplasias Colorretais/patologia , Proteínas de Homeodomínio/metabolismo , Integrina alfa5/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Apoptose , Western Blotting , Caderinas/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Imunofluorescência , Células HEK293 , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Técnicas Imunoenzimáticas , Integrina alfa5/genética , Invasividade Neoplásica , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/genética , Regulação para Cima , Homeobox 2 de Ligação a E-box com Dedos de ZincoRESUMO
TMPRSS4 is a novel type II transmembrane serine protease that is highly expressed on the cell surface in pancreatic, thyroid, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates cancer cell invasion, epithelial-mesenchymal transition, and metastasis and that increased TMPRSS4 expression correlates with colorectal cancer progression. We also demonstrated that TMPRSS4 upregulates urokinase-type plasminogen activator (uPA) gene expression to induce cancer cell invasion. However, it remains unknown how proteolytic activity of TMPRSS4 contributes to invasion. In this study, we report that TMPRSS4 directly converted inactive pro-uPA into the active form through its proteolytic activity. Analysis of conditioned medium from cells overexpressing TMPRSS4 demonstrated that the active TMPRSS4 protease domain is released from the cells and is associated with the plasma membrane. Furthermore, TMPRSS4 could increase pro-uPA-mediated invasion in a serine proteolytic activity-dependent manner. These observations suggest that TMPRSS4 is an upstream regulator of pro-uPA activation. This study provides valuable insights into the proteolytic function of TMPRSS4 as well as mechanisms for the control of invasion.
Assuntos
Proteínas de Membrana/metabolismo , Invasividade Neoplásica/fisiopatologia , Serina Endopeptidases/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Regulação para Cima , Ativador de Plasminogênio Tipo Uroquinase/genéticaRESUMO
BACKGROUND: MicroRNAs (miRNAs) are known to regulate various biological processes, including expression of cellular gene and virus-induced inflammation. Recently, studies have indicated that some miRNAs could regulate influenza virus replication. Due to differential sensitivities of influenza A virus strains to different species (avian and mammalian), variations in host responses may be observed. Therefore, we investigated and compared the differences in global host miRNA expression in mouse lungs infected with wild type low pathogenicity A/Aquatic bird/Korea/w81/2005 (H5N2) (w81) or mouse-adapted virulent A/Aquatic bird /Korea/ma81/2007 (H5N2) (ma81) virus. RESULTS: Although the mice infected with ma81 exhibited much greater mortality than w81-infected mice, the parental w81 virus induced a higher number of differentially expressed miRNAs compared to the ma81 virus. Between these 2 viruses, a total of 27 and 20 miRNAs were commonly expressed at 1 dpi and 3 dpi, respectively. It is noteworthy that only 9 miRNAs (miR-100-5p, miR-130a-5p, miR-146b-3p, miR-147-3p, miR-151-5p, miR-155-3p, miR-223-3p, miR-301a-3p, and miR-495-3p) were significantly upregulated in both lungs infected with either wild type w81 or the mouse-adapted ma81 strain at both time points. Notably, expression levels of miR-147-3p, miR-151-5p, miR-155-3p, and miR-223-3p were higher in the lungs of mice infected with the ma81 virus than those infected with the w81 virus. To identify potential roles of these miRNAs in regulating influenza virus replication, each group of mice was intranasally treated with each inhibitor of specifically targeting 4 miRNAs, and then challenged with 5 mouse lethal dose 50% (MLD50) of the virulent ma81 virus on the following day. Although the specific miRNA inhibitors could not completely attenuate mortality or reduce viral replication, the miR-151-5p- and miR-223-3p-inhibitors reduced mortality of inoculated mice to 70% and substantially delayed death. CONCLUSIONS: Our results suggest that the mammalian adaptation of avian influenza A virus results in a different miRNA expression pattern in lungs of virus-infected mice compared with its parental strain, and use of specific miRNA inhibitors to target genes associated with the immune response or cell death may affect virulence and virus replication.