Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 140(8): 889-899, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35679477

RESUMO

Lung-resident neutrophils need to be tightly regulated to avoid degranulation- and cytokine-associated damage to fragile alveolar structures that can lead to fatal outcomes. Here we show that lung neutrophils (LNs) express distinct surface proteins and genes that distinguish LNs from bone marrow and blood neutrophils. Functionally, LNs show impaired migratory activity toward chemoattractants and produce high levels of interleukin-6 (IL-6) at steady state and low levels of tumor necrosis factor-α in response to lipopolysaccharide (LPS) challenge. Treating bone marrow neutrophils with bronchoalveolar lavage fluid or prostaglandin E2 induces LN-associated characteristics, including the expression of transglutaminase 2 (Tgm2) and reduced production of inflammatory cytokines upon LPS challenge. Neutrophils from Tgm2-/- mice release high levels of inflammatory cytokines in response to LPS. Lung damage is significantly exacerbated in Tgm2-/- mice in an LPS-induced acute respiratory distress syndrome model. Collectively, we demonstrate that prostaglandin E2 is a key factor for the generation of LNs with unique immune suppressive characteristics, acting through protein kinase A and Tgm2, and LNs play essential roles in protection of the lungs against pathogenic inflammation.


Assuntos
Dinoprostona , Neutrófilos , Animais , Líquido da Lavagem Broncoalveolar/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Lipopolissacarídeos , Pulmão/patologia , Camundongos , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Bioorg Chem ; 143: 107061, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154386

RESUMO

Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Neoplasias Renais , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Imidazóis/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Simulação de Acoplamento Molecular , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Semin Cancer Biol ; 86(Pt 2): 347-357, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35868515

RESUMO

Several metabolic pathways for the supply of adenosine triphosphate (ATP) have been proposed; however, the major source of reducing power for ADP in cancer remains unclear. Although glycolysis is the source of ATP in tumors according to the Warburg effect, ATP levels do not differ between cancer cells grown in the presence and absence of glucose. Several theories have been proposed to explain the supply of ATP in cancer, including metabolic reprograming in the tumor microenvironment. However, these theories are based on the production of ATP by the TCA-OxPhos pathway, which is inconsistent with the Warburg effect. We found that blocking fatty acid oxidation (FAO) in the presence of glucose significantly decreased ATP production in various cancer cells. This suggests that cancer cells depend on fatty acids to produce ATP through FAO instead of glycolysis. We observed that cancer cell growth mainly relies on metabolic nutrients and oxygen systemically supplied through the bloodstream instead of metabolic reprogramming. In a spontaneous mouse tumor model (KrasG12D; Pdx1-cre), tumor growth was 2-fold higher in mice fed a high-fat diet (low-carbo diet) that caused obesity, whereas a calorie-balanced, low-fat diet (high-carbo diet) inhibited tumor growth by 3-fold compared with that in mice fed a control/normal diet. This 5-fold difference in tumor growth between mice fed low-fat and high-fat diets suggests that fat-induced obesity promotes cancer growth, and tumor growth depends on fatty acids as the primary source of energy.


Assuntos
Ácidos Graxos , Neoplasias , Camundongos , Humanos , Animais , Ácidos Graxos/metabolismo , Trifosfato de Adenosina/metabolismo , Dieta Hiperlipídica , Obesidade/complicações , Obesidade/metabolismo , Glucose/metabolismo , Neoplasias/etiologia , Microambiente Tumoral
4.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569345

RESUMO

In previous work, we showed that cancer cells do not depend on glycolysis for ATP production, but they do on fatty acid oxidation. However, we found some cancer cells induced cell death after glucose deprivation along with a decrease of ATP production. We investigated the different response of glucose deprivation with two types of cancer cells including glucose insensitive cancer cells (GIC) which do not change ATP levels, and glucose sensitive cancer cells (GSC) which decrease ATP production in 24 h. Glucose deprivation-induced cell death in GSC by more than twofold after 12 h and by up to tenfold after 24 h accompanied by decreased ATP production to compare to the control (cultured in glucose). Glucose deprivation decreased the levels of metabolic intermediates of the pentose phosphate pathway (PPP) and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) in both GSC and GIC. However, glucose deprivation increased reactive oxygen species (ROS) only in GSC, suggesting that GIC have a higher tolerance for decreased NADPH than GSC. The twofold higher ratio of reduced/oxidized glutathione (GSH/GSSG) in GIS than in GSC correlates closely with the twofold lower ROS levels under glucose starvation conditions. Treatment with N-acetylcysteine (NAC) as a precursor to the biologic antioxidant glutathione restored ATP production by 70% and reversed cell death caused by glucose deprivation in GSC. The present findings suggest that glucose deprivation-induced cancer cell death is not caused by decreased ATP levels, but rather triggered by a failure of ROS regulation by the antioxidant system. Conclusion is clear that glucose deprivation-induced cell death is independent from ATP depletion-induced cell death.


Assuntos
Trifosfato de Adenosina , Glucose , Neoplasias , Espécies Reativas de Oxigênio , Glucose/deficiência , Trifosfato de Adenosina/metabolismo , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo , NADP/metabolismo , Glutationa/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Células PC-3 , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Morte Celular
5.
Molecules ; 28(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37446614

RESUMO

Annually, millions of new cancer cases are reported, leading to millions of deaths worldwide. Among the newly reported cases, breast and colon cancers prevail as the most frequently detected variations. To effectively counteract this rapid increase, the development of innovative therapies is crucial. Small molecules possessing pyridine and urea moieties have been reported in many of the currently available anticancer agents, especially VEGFR2 inhibitors. With this in mind, a rational design approach was employed to create hybrid small molecules combining urea and pyridine. These synthesized compounds underwent in vitro testing against breast and colon cancer cell lines, revealing potent submicromolar anticancer activity. Compound 8a, specifically, exhibited an impressive GI50 value of 0.06 µM against the MCF7 cancer cell line, while compound 8h displayed the highest cytotoxic activity against the HCT116 cell line, with a GI50 of 0.33 ± 0.042 µM. Notably, compounds 8a, 8h, and 8i demonstrated excellent safety profiles when tested on normal cells. Molecular docking, dynamic studies, and free energy calculations were employed to validate the affinity of these compounds as VEGFR2 inhibitors.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Ureia/farmacologia , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Piridinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Estrutura Molecular
6.
Molecules ; 26(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429981

RESUMO

Resident cancer cells with stem cell-like features induce drug tolerance, facilitating survival of glioblastoma (GBM). We previously showed that strategies targeting tumor bioenergetics present a novel emerging avenue for treatment of GBM. The objective of this study was to enhance the therapeutic effects of dual inhibition of tumor bioenergetics by combination of gossypol, an aldehyde dehydrogenase inhibitor, and phenformin, a biguanide compound that depletes oxidative phosphorylation, with the chemotherapeutic drug, temozolomide (TMZ), to block proliferation, stemness, and invasiveness of GBM tumorspheres (TSs). Combination therapy with gossypol, phenformin, and TMZ induced a significant reduction in ATP levels, cell viability, stemness, and invasiveness compared to TMZ monotherapy and dual therapy with gossypol and phenformin. Analysis of differentially expressed genes revealed up-regulation of genes involved in programmed cell death, autophagy, and protein metabolism and down-regulation of those associated with cell metabolism, cycle, and adhesion. Combination of TMZ with dual inhibitors of tumor bioenergetics may, therefore, present an effective strategy against GBM by enhancing therapeutic effects through multiple mechanisms of action.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Glioblastoma , Proteínas de Neoplasias/antagonistas & inibidores , Esferoides Celulares/enzimologia , Aldeído Desidrogenase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Humanos , Proteínas de Neoplasias/metabolismo , Temozolomida/farmacologia
7.
FASEB J ; 33(1): 750-762, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020832

RESUMO

C-peptide has a beneficial effect against diabetic complications, but its role in hyperglycemia-induced metastasis is unknown. We investigated hyperglycemia-mediated pulmonary vascular leakage and metastasis and C-peptide inhibition of these molecular events using human pulmonary microvascular endothelial cells (HPMVECs) and streptozotocin-induced diabetic mice. VEGF, which is elevated in the lungs of diabetic mice, activated transglutaminase 2 (TGase2) in HPMVECs by sequential elevation of intracellular Ca2+ and reactive oxygen species (ROS) levels. VEGF also induced vascular endothelial (VE)-cadherin disruption and increased the permeability of endothelial cells, both of which were prevented by the TGase inhibitors monodansylcadaverine and cystamine or TGM2-specific small interfering RNA. C-peptide prevented VEGF-induced VE-cadherin disruption and endothelial cell permeability through inhibiting ROS-mediated activation of TGase2. C-peptide supplementation inhibited hyperglycemia-induced ROS generation and TGase2 activation and prevented vascular leakage and metastasis in the lungs of diabetic mice. The role of TGase2 in hyperglycemia-induced pulmonary vascular leakage and metastasis was further demonstrated in diabetic Tgm2-/- mice. These findings demonstrate that hyperglycemia induces metastasis, and C-peptide prevents the hyperglycemia-induced metastasis in the lungs of diabetic mice by inhibiting VEGF-induced TGase2 activation and subsequent vascular leakage.-Jeon, H.-Y., Lee, Y.-J., Kim, Y.-S., Kim, S.-Y., Han, E.-T., Park, W. S., Hong, S.-H., Kim, Y.-M., Ha, K.-S. Proinsulin C-peptide prevents hyperglycemia-induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice.


Assuntos
Peptídeo C/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Hiperglicemia/complicações , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Apoptose , Feminino , Proteínas de Ligação ao GTP/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Espécies Reativas de Oxigênio/metabolismo , Transglutaminases/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Int J Mol Sci ; 21(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260198

RESUMO

In a recent report, no significance of transglutaminase 2 (TGase 2) was noted in the analyses of expression differences between normal and clear cell renal cell carcinoma (ccRCC), although we found that knock down of TGase 2 induced significant p53-mediated cell death in ccRCC. Generally, to find effective therapeutic targets, we need to identify targets that belong specifically to a cancer phenotype that can be differentiated from a normal phenotype. Here, we offer precise reasons why TGase 2 may be the first therapeutic target for ccRCC, according to several lines of evidence. TGase 2 is negatively regulated by von Hippel-Lindau tumor suppressor protein (pVHL) and positively regulated by hypoxia-inducible factor 1-α (HIF-1α in renal cell carcinoma (RCC). Therefore, most of ccRCC presents high level expression of TGase 2 because over 90% of ccRCC showed VHL inactivity through mutation and methylation. Cell death, angiogenesis and drug resistance were specifically regulated by TGase 2 through p53 depletion in ccRCC because over 90% of ccRCC express wild type p53, which is a cell death inducer as well as a HIF-1α suppressor. Although there have been no detailed studies of the physiological role of TGase 2 in multi-omics analyses of ccRCC, a life-long study of the physiological roles of TGase 2 led to the discovery of the first target as well as the first therapeutic treatment for ccRCC in the clinical field.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/genética , Proteínas de Ligação ao GTP/genética , Neoplasias Renais/genética , Transglutaminases/genética , Antineoplásicos/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Proteínas de Ligação ao GTP/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Terapia de Alvo Molecular , Medicina de Precisão , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
9.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708896

RESUMO

Angiogenesis and the expression of vascular endothelial growth factor (VEGF) are increased in renal cell carcinoma (RCC). Transglutaminase 2 (TGase 2), which promotes angiogenesis in endothelial cells during wound healing, is upregulated in RCC. Tumor angiogenesis involves three domains: cancer cells, the extracellular matrix, and endothelial cells. TGase 2 stabilizes VEGF in the extracellular matrix and promotes VEGFR-2 nuclear translocation in endothelial cells. However, the role of TGase 2 in angiogenesis in the cancer cell domain remains unclear. Hypoxia-inducible factor (HIF)-1α-mediated VEGF production underlies the induction of angiogenesis in cancer cells. In this study, we show that p53 downregulated HIF-1α in RCC, and p53 overexpression decreased VEGF production. Increased TGase 2 promoted angiogenesis by inducing p53 degradation, leading to the activation of HIF-1α. The interaction of HIF-1α and p53 with the cofactor p300 is required for stable transcriptional activation. We found that TGase 2-mediated p53 depletion increased the availability of p300 for HIF-1α-p300 binding. A preclinical xenograft model suggested that TGase 2 inhibition can reverse angiogenesis in RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Proteína p300 Associada a E1A/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Renais/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Mapas de Interação de Proteínas
10.
Toxicol Appl Pharmacol ; 358: 10-22, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30195017

RESUMO

This study aimed to investigate the role of transglutaminase 2 (TG2) expressed in mast cells in substantia nigra (SN) in Parkinson's disease (PD) model or human PD patients. C57BL/6 mice received 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by ip injection to induce PD. Bone marrow-derived mast cells (BMMCs) were adoptively transferred to TG2 knockout (KO or TG2-/-) mice by iv injection 1 day before MPTP injection or stimulated by 1 methyl-4-phenylpyridinium (MMP+). KO-MPTP mice showed reduced expression of tyrosine hydroxylase (TH) and dopamine (DA) transporter (DAT) and loss of TH+ DA neurons, and expression of markers (c-kit, tryptase, FcεRI), mediators' release (histamine, leukotrienes, cytokines), and TG2 related to mast cells, and co-localization of DA neuronal cells and mast cells in SN tissues or release of mediators and TG2 activity in SN tissues and sera versus those in WT (wild type)-MPTP or BM + KO-MPTP mice. KO-MPTP mice reversed the alterations of behavior. KO-BMMCs-transferred KO-MPTP (BM + KO-MPTP) mice had restoration of all the responses versus the KO-MPTP mice. MPP+-stimulated BMMCs had increased mediators' release, which were inhibited by TG2 inhibitor (R2 peptide). All the mediators and TG2 activity were also increased in the sera of human PD patients. The data suggest that TG2 expressed in mast cells recruited into SN tissues might contribute to neuroinflammation, which is known as one of the important features in pathogenesis of PD, via up-regulating the release of various mediators.


Assuntos
Proteínas de Ligação ao GTP/biossíntese , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/metabolismo , Mastócitos/metabolismo , Transtornos Parkinsonianos/metabolismo , Transglutaminases/biossíntese , Idoso , Animais , Sobrevivência Celular/fisiologia , Feminino , Proteínas de Ligação ao GTP/genética , Humanos , Masculino , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Transtornos Parkinsonianos/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/genética
11.
Amino Acids ; 50(11): 1583-1594, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30105541

RESUMO

Previously we have demonstrated transglutaminase 2 (TGase 2) inhibition abrogated renal cell carcinoma (RCC) using GK921 (3-(phenylethynyl)-2-(2-(pyridin-2-yl)ethoxy)pyrido[3,2-b]pyrazine), although the mechanism of TGase 2 inhibition remains unsolved. Recently, we found that the increase of TGase 2 expression is required for p53 depletion in RCC by transporting the TGase 2 (1-139 a.a)-p53 complex to the autophagosome, through TGase 2 (472-687 a.a) binding p62. In this study, mass analysis revealed that GK921 bound to the N terminus of TGase 2 (81-116 a.a), which stabilized p53 by blocking TGase 2 binding. This suggests that RCC survival can be stopped by p53-induced cell death through blocking the p53-TGase 2 complex formation using GK921. Although GK921 does not bind to the active site of TGase 2, GK921 binding to the N terminus of TGase 2 also inactivated TGase 2 activity through acceleration of non-covalent self-polymerization of TGase 2 via conformational change. This suggests that TGase 2 has an allosteric binding site (81-116 a.a) which changes the conformation of TGase 2 enough to accelerate inactivation through self-polymer formation.


Assuntos
Carcinoma de Células Renais/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Renais/enzimologia , Proteínas de Neoplasias/metabolismo , Transglutaminases/metabolismo , Regulação Alostérica , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Neoplasias Renais/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Domínios Proteicos , Proteína 2 Glutamina gama-Glutamiltransferase , Pirazinas/farmacologia , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética
12.
Amino Acids ; 49(3): 461-471, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27394142

RESUMO

Transglutaminase 2 (TGase 2) catalyzes a crosslink between protein bound-glutamine and -lysine. We proposed the mechanism of TGase 2 activation depends on conformation change from unfolded monomer to unfolded dimer. We found that TGase 2 has temperature-sensitive conformation change system at 30 °C. Small-angle X-ray scattering analysis showed that the enzyme was maintained as an unfolded monomer at temperatures below 30 °C, but changed to an unfolded dimer at over 30 °C. Mass analysis revealed that the C-terminus of TGase 2 was the critical region for dimerization. Furthermore, this conformational switch creates new biochemical reactivity that catalyzed inter-molecular crosslink at above 30 °C as an unfolded dimer of TGase 2 while catalyzed intra-molecular crosslink at below 30 °C as an unfolded monomer of TGase 2. The mechanism of TGase 2 activation depends on temperature-sensitive conformation change from unfolded monomer to unfolded dimer at over 30 °C. Furthermore, inter-molecular crosslinking activity is generated by the dimeric form of TGase 2. TGase 2 switches its conformation from a monomer to a dimer following a change in temperature, which engendered unique catalytic function of enzyme as inter-molecular crosslinking activity with calcium.


Assuntos
Proteínas de Ligação ao GTP/química , Glutamina/química , Lisina/química , Transglutaminases/química , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutamina/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Proteína 2 Glutamina gama-Glutamiltransferase , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Temperatura , Transglutaminases/genética , Transglutaminases/metabolismo , Difração de Raios X
13.
Biochem Biophys Res Commun ; 477(3): 374-82, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27338638

RESUMO

We found that non-small cell lung cancer (NSCLC) is remarkably sensitive to the regulation of glutamine supply by testing the metabolic dependency of 11 cancer cell lines against regulation of glycolysis, autophagy, fatty acid synthesis, and glutamine supply. Glutamine is known as a key supplement of cancer cell growth that is converted to α-ketoglutarate for anabolic biogenesis via glutamate by glutaminase 1 (GLS1). GLS1 inhibition using 10 µM of bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) showed about 50% cell growth arrest by SRB assay. By testing the synergistic effects of conventional therapeutics, BPTES combined with 5-fluorouracil (5-FU), an irreversible inhibitor of thymidylate synthase, significant effects were observed on cell growth arrest in NSCLC. We found that GLS1 inhibition using BPTES reduced metabolic intermediates including thymidine and carbamoyl phosphate. Reduction of thymidine and carbamoyl-phosphate synthesis by BPTES treatment exacerbated pyrimidine supply by combination with 5-FU, which induced cell death synergistically in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glutaminase/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Timidina/biossíntese , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/enzimologia
14.
Proc Natl Acad Sci U S A ; 110(48): 19360-5, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218616

RESUMO

Protein kinase CK2 is a ubiquitous kinase that can phosphorylate hundreds of cellular proteins and plays important roles in cell growth and development. Deregulation of CK2 is related to a variety of human cancers, and CK2 is regarded as a suppressor of apoptosis; therefore, it is a target of anticancer therapy. Nucleolar phosphoprotein 140 (Nopp140), which is an intrinsically disordered protein, interacts with CK2 and inhibits the latter's catalytic activity in vitro. Interestingly, the catalytic activity of CK2 is recovered in the presence of d-myo-inositol 1,2,3,4,5,6-hexakisphosphate (IP6). IP6 is widely distributed in animal cells, but the molecular mechanisms that govern its cellular functions in animal cells have not been completely elucidated. In this study, the crystal structure of CK2 in complex with IP6 showed that the lysine-rich cluster of CK2 plays an important role in binding to IP6. The biochemical experiments revealed that a Nopp140 fragment (residues 568-596) and IP6 competitively bind to the catalytic subunit of CK2 (CK2α), and phospho-Ser574 of Nopp140 significantly enhances its interaction with CK2α. Substitutions of K74E, K76E, and K77E in CK2α significantly reduced the interactions of CK2α with both IP6 and the Nopp140-derived peptide. Our study gives an insight into the regulation of CK2. In particular, our work suggests that CK2 activity is inhibited by Nopp140 and reactivated by IP6 by competitive binding at the substrate recognition site of CK2.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica/fisiologia , Substâncias Macromoleculares/química , Modelos Moleculares , Proteínas Nucleares/química , Fosfoproteínas/química , Ácido Fítico/química , Substituição de Aminoácidos , Cristalização , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ácido Fítico/metabolismo , Conformação Proteica , Difração de Raios X
15.
Proc Natl Acad Sci U S A ; 109(4): E177-86, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22203995

RESUMO

The decision between survival and death in cells exposed to TNF relies on a highly regulated equilibrium between proapoptotic and antiapoptotic factors. The TNF-activated antiapoptotic response depends on several transcription factors, including NF-κB and its RelA/p65 subunit, that are activated through phosphorylation-mediated degradation of IκB inhibitors, a process controlled by the IκB kinase complex. Genetic studies in mice have identified the IκB kinase-related kinase TANK-binding kinase 1 (TBK1; also called NAK or T2K) as an additional regulatory molecule that promotes survival downstream of TNF, but the mechanism through which TBK1 exerts its survival function has remained elusive. Here we show that TBK1 triggers an antiapoptotic response by controlling a specific RelA/p65 phosphorylation event. TBK1-induced RelA phosphorylation results in inducible expression of plasminogen activator inhibitor-2 (PAI-2), a member of the serpin family with known antiapoptotic activity. PAI-2 limits caspase-3 activation through stabilization of transglutaminase 2 (TG2), which cross-links and inactivates procaspase-3. Importantly, Tg2(-/-) mice were found to be more susceptible to apoptotic cell death in two models of TNF-dependent acute liver injury. Our results establish PAI-2 and TG2 as downstream mediators in the antiapoptotic response triggered upon TBK1 activation.


Assuntos
Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator de Transcrição RelA/metabolismo , Transglutaminases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Autorradiografia , Caspase 3/metabolismo , Imunoprecipitação da Cromatina , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Proteínas de Ligação ao GTP/genética , Inativação Gênica , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Análise em Microsséries , Mutagênese Sítio-Dirigida , Fosforilação , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética , Transglutaminases/genética
16.
BMC Cancer ; 14: 31, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24438088

RESUMO

BACKGROUND: Recent studies have shown that glucosamine inhibits the proliferation of various human cancer cell lines and downregulates the activity of COX-2, HIF-1α, p70S6K, and transglutaminase 2. Because the IGF-1R/Akt pathway is a common upstream regulator of p70S6K, HIF-1α, and COX-2, we hypothesized that glucosamine inhibits cancer cell proliferation through this pathway. METHODS: We used various in vitro assays including flow cytometry assays, small interfering RNA (siRNA) transfection, western blot analysis, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, reverse transcription-polymerase chain reaction, and in vivo xenograft mouse model to confirm anticancer activities of glucosamine and to investigate the molecular mechanism. RESULTS: We found that glucosamine inhibited the growth of human non-small cell lung cancer (NSCLC) cells and negatively regulated the expression of IGF-1R and phosphorylation of Akt. Glucosamine decreased the stability of IGF-1R and induced its proteasomal degradation by increasing the levels of abnormal glycosylation on IGF-1R. Moreover, picropodophyllin, a selective inhibitor of IGF-1R, and the IGF-1R blocking antibody IMC-A12 induced significant cell growth inhibition in glucosamine-sensitive, but not glucosamine-resistant cell lines. Using in vivo xenograft model, we confirmed that glucosamine prohibits primary tumor growth through reducing IGF-1R signalling and increasing ER-stress. CONCLUSIONS: Taken together, our results suggest that targeting the IGF-1R/Akt pathway with glucosamine may be an effective therapeutic strategy for treating some type of cancer.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Glucosamina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Interferência de RNA , Receptor IGF Tipo 1/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
17.
FASEB J ; 27(9): 3487-95, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23704086

RESUMO

Renal cell carcinoma (RCC), the predominant form of kidney cancer, is characterized by high resistance to radiation and chemotherapy. This study shows that expression of protein cross-linking enzyme transglutaminase 2 (TGase 2) is markedly increased in 7 renal cell carcinoma (RCC) cell lines in comparison to HEK293 and other cancer cell lines, such as NCI 60. However, the key role of TGase 2 in RCC was not clear. The down-regulation of TGase 2 was found to stabilize p53 expression, thereby inducing a 3- to 10-fold increase in apoptosis for 786-O, A498, CAKI-1, and ACHN cell lines by DAPI staining. MEF cells from TGase 2(-/-) mice showed stabilized p53 under apoptotic stress to compare to MEFs from wild-type mice. TGase 2 directly cross links the DNA binding domain of p53, leading to p53 depletion via autophagy in RCC. TGase 2 and p53 expression showed an inverse relationship in RCC cells. This finding implies that induced expression of TGase 2 promotes tumor cell survival through p53 depletion in RCC.


Assuntos
Apoptose/fisiologia , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Western Blotting , Carcinoma de Células Renais/genética , Linhagem Celular , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Proteínas de Ligação ao GTP/genética , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transglutaminases/genética , Proteína Supressora de Tumor p53/genética
18.
Amino Acids ; 46(6): 1527-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24643363

RESUMO

Transglutaminase 2 (TGase 2) expression and glycolysis are increased in most renal cell carcinoma (RCC) cell lines compared to the HEK293 kidney cell line. Although increased glycolysis and altered tricarboxylic acid cycle are common in RCC, the detailed mechanism by which this phenomenon occurs remains to be elucidated. In the present study, TGase 2 siRNA treatment lowered glucose consumption and lactate levels by about 20-30 % in RCC cells; conversely, high expression of TGase 2 increased glucose consumption and lactate production together with decreased mitochondrial aconitase (Aco 2) levels. In addition, TGase 2 siRNA increased mitochondrial membrane potential and ATP levels by about 20-30 % and restored Aco 2 levels in RCC cells. Similarly, Aco 2 levels and ATP production decreased significantly upon TGase 2 overexpression in HEK293 cells. Therefore, TGase 2 leads to depletion of Aco 2, which promotes glycolytic metabolism in RCC cells.


Assuntos
Carcinoma de Células Renais/enzimologia , Proteínas de Ligação ao GTP/biossíntese , Neoplasias Renais/enzimologia , Transglutaminases/biossíntese , Aconitato Hidratase/biossíntese , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial , Proteína 2 Glutamina gama-Glutamiltransferase , Células Tumorais Cultivadas , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
19.
Org Biomol Chem ; 12(27): 4932-40, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24879506

RESUMO

In the process of optimization, we developed a novel core skeleton of thieno[3,4-b]pyrazine via GK-13. The derivatives synthesized were shown to inhibit TGase 2 activity in cancer cells. Some of the hit compounds such as the arylethynyl group-coupled thieno[3,4-b]pyrazine derivatives were shown to exhibit promising activity for use as potential therapeutic small-molecules in renal cancer by inhibiting TGase 2 activity.


Assuntos
Inibidores Enzimáticos/síntese química , Proteínas de Ligação ao GTP/antagonistas & inibidores , Pirazinas/síntese química , Transglutaminases/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Proteína 2 Glutamina gama-Glutamiltransferase , Pirazinas/química , Pirazinas/farmacologia
20.
PLoS Genet ; 7(3): e1001351, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483803

RESUMO

Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38) was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2) is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.


Assuntos
Processamento Alternativo , Aminoacil-tRNA Sintetases/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Idoso , Animais , Apoptose/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/patologia , Éxons , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Análise de Sobrevida , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA