Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Nutr ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705901

RESUMO

PURPOSE: Recent advances have led to greater recognition of the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD). There has been evidence that CKD is also associated with dysbiosis. Here, we aimed to evaluate whether probiotic supplements can have protective effects against kidney injury via improving mitochondrial function. METHODS: An animal model of CKD was induced by feeding C57BL/6 mice a diet containing 0.2% adenine. KBL409, a strain of Lactobacillus acidophilus, was administered via oral gavage at a dose of 1 × 109 CFU daily. To clarify the underlying mechanisms by which probiotics exert protective effects on mitochondria in CKD, primary mouse tubular epithelial cells stimulated with TGF-ß and p-cresyl sulfate were administered with butyrate. RESULTS: In CKD mice, PGC-1α and AMPK, key mitochondrial energy metabolism regulators, were down-regulated. In addition, mitochondrial dynamics shifted toward fission, the number of fragmented cristae increased, and mitochondrial mass decreased. These alterations were restored by KBL409 administration. KBL409 supplementation also improved defects in fatty acid oxidation and glycolysis and restored the suppressed enzyme levels involved in TCA cycle. Accordingly, there was a concomitant improvement in mitochondrial respiration and ATP production assessed by mitochondrial function assay. These favorable effects of KBL409 on mitochondria ultimately decreased kidney fibrosis in CKD mice. In vitro analyses with butyrate recapitulated the findings of animal study. CONCLUSIONS: This study demonstrates that administration of the probiotic Lactobacillus acidophilus KBL409 protects against kidney injury via improving mitochondrial function.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38411865

RESUMO

Faecalibacterium prausnitzii is one of the most dominant commensal bacteria in the human gut, and certain anti-inflammatory functions have been attributed to a single microbial anti-inflammatory molecule (MAM). Simultaneously, substantial diversity among F. prausnitzii strains is acknowledged, emphasizing the need for strain-level functional studies aimed at developing innovative probiotics. Here, two distinct F. prausnitzii strains, KBL1026 and KBL1027, were isolated from Korean donors, exhibiting notable differences in the relative abundance of F. prausnitzii. Both strains were identified as the core Faecalibacterium amplicon sequence variant (ASV) within the healthy Korean cohort, and their MAM sequences showed a high similarity of 98.6%. However, when a single strain was introduced to mice with dextran sulfate sodium (DSS)-induced colitis, KBL1027 showed the most significant ameliorative effects, including alleviation of colonic inflammation and restoration of gut microbial dysbiosis. Moreover, the supernatant from KBL1027 elevated the secretion of IL-10 cytokine more than that of KBL1026 in mouse bone marrow-derived macrophage (BMDM) cells, suggesting that the strain-specific, anti-inflammatory efficacy of KBL1027 might involve effector compounds other than MAM. Through analysis of the Faecalibacterium pan-genome and comparative genomics, strain-specific functions related to extracellular polysaccharide biosynthesis were identified in KBL1027, which could contribute to the observed morphological disparities. Collectively, our findings highlight the strain-specific, anti-inflammatory functions of F. prausnitzii, even within the same core ASV, emphasizing the influence of their human origin.

4.
J Microbiol Biotechnol ; 34(6): 1299-1306, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38755001

RESUMO

Antibiotics are used to control infectious diseases. However, adverse effects of antibiotics, such as devastation of the gut microbiota and enhancement of the inflammatory response, have been reported. Health benefits of fermented milk are established and can be enhanced by the addition of probiotic strains. In this study, we evaluated effects of fermented milk containing Lacticaseibacillus rhamnosus (L. rhamnosus) SNUG50430 in a mouse model with antibiotic treatment. Fermented milk containing 2 × 105 colony-forming units of L. rhamnosus SNUG50430 was administered to six week-old female BALB/c mice for 1 week. Interleukin (IL)-10 levels in colon samples were significantly increased (P < 0.05) compared to water-treated mice, whereas interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were decreased, of mice treated with fermented milk containing L. rhamnosus SNUG50430-antibiotics-treated (FM+LR+Abx-treated) mice. Phylum Firmicutes composition in the gut was restored and the relative abundances of several bacteria, including the genera Coprococcus and Lactobacillus, were increased in FM+LR+Abx-treated mice compared to PBS+Abx-treated mice. Interestingly, abundances of genus Coprococcus and Lactobacillus were positively correlated with IL-5 and IL-10 levels (P < 0.05) in colon samples and negative correlated with IFN-γ and TNF-α levels in serum samples (P < 0.001). Acetate and butyrate were increased in mice with fermented milk and fecal microbiota of FM+LR+Abx-treated mice were highly enriched with butyrate metabolism pathway compared to water-treated mice (P < 0.05). Thus, fermented milk containing L. rhamnosus SNUG50430 was shown to ameliorate adverse health effects caused by antibiotics through modulating immune responses and the gut microbiota.


Assuntos
Antibacterianos , Produtos Fermentados do Leite , Microbioma Gastrointestinal , Interleucina-10 , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos BALB C , Probióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Feminino , Camundongos , Probióticos/administração & dosagem , Antibacterianos/farmacologia , Interleucina-10/metabolismo , Produtos Fermentados do Leite/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Interferon gama/metabolismo , Colo/microbiologia , Fermentação , Citocinas/metabolismo , Citocinas/sangue , Fezes/microbiologia
5.
J Microbiol ; 62(2): 91-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386273

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease with repeated exacerbations of eczema and pruritus. Probiotics can prevent or treat AD appropriately via modulation of immune responses and gut microbiota. In this study, we evaluated effects of Lactobacillus acidophilus (L. acidophilus) KBL409 using a house dust mite (Dermatophagoides farinae)-induced in vivo AD model. Oral administration of L. acidophilus KBL409 significantly reduced dermatitis scores and decreased infiltration of immune cells in skin tissues. L. acidophilus KBL409 reduced in serum immunoglobulin E and mRNA levels of T helper (Th)1 (Interferon-γ), Th2 (Interleukin [IL]-4, IL-5, IL-13, and IL-31), and Th17 (IL-17A) cytokines in skin tissues. The anti-inflammatory cytokine IL-10 was increased and Foxp3 expression was up-regulated in AD-induced mice with L. acidophilus KBL409. Furthermore, L. acidophilus KBL409 significantly modulated gut microbiota and concentrations of short-chain fatty acids and amino acids, which could explain its effects on AD. Our results suggest that L. acidophilus KBL409 is the potential probiotic for AD treatment by modulating of immune responses and gut microbiota of host.


Assuntos
Dermatite Atópica , Probióticos , Animais , Camundongos , Dermatite Atópica/terapia , Dermatite Atópica/metabolismo , Lactobacillus acidophilus/metabolismo , Citocinas/metabolismo , Pele , Probióticos/uso terapêutico
6.
Artigo em Inglês | MEDLINE | ID: mdl-38949757

RESUMO

Influenza virus infection is an important public-health concern because of its high transmissibility and potential for severe complications. To mitigate the severity and complications of influenza, probiotics containing Lactobacillus are used and generally recognized as safe. We evaluated the anti-influenza effect of Limosilactobacillus reuteri (L. reuteri) KBL346, isolated from the fecel sample of healthy South Koreans, in mice. BALB/c mice were orally administered live and heat-inactivated L. reuteri KBL346. After infection with influenza virus (A/Puerto Rico/8/34) 0.5 times the 50% lethal dose (LD50), body weight loss was improved and recovery was accelerated. Furthermore, L. reuteri KBL346 improved body weight loss and survival rate of mice infected with 4 times the LD50 of influenza virus. Heat-inactivated L. reuteri KBL346 reduced the viral titer in the lung and the plasma immunoglobulin G level. Expression levels of genes encoding inflammatory cytokines, such as interferon-γ and toll-like receptor 2 (Tlr2), were decreased in the lung tissues of mice administered L. reuteri KBL346. Live and heat-inactivated L. reuteri KBL346 increased the expression level of Adamts4, which promotes recovery after infection, and decreased that of Tlr2. The α-diversity of the gut microbiome was modulated by the administration of L. reuteri KBL346. In addition, the structure of the gut microbial community differed according to the degree of weight loss. L. reuteri KBL346 has the potential to alleviate disease severity and improve histopathological changes in mice infected with influenza A/PR8, suggesting its efficacy as a probiotic against influenza infection.

7.
Am J Physiol Endocrinol Metab ; 304(7): E703-10, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23360825

RESUMO

The developmentally regulated GTP-binding protein-2 (DRG2) is a novel subclass of GTP-binding proteins. Many functional characteristics of osteoclasts (OC) are associated with small GTPases. We hypothesized that DRG2 affects bone mass via modulating OC activity. Using DRG2 transgenic mice, we investigated the role of DRG2 in bone remodeling. DRG2 overexpression caused a decrease in bone mass and an increase in the number and activity of OC in vivo. DRG2 overexpression increased fusion, spreading, survival, and resorption activity of OC in vitro. Downregulation of DRG2 by siRNA decreased fusion, spreading, and survival of OC, supporting the observations found in DRG2 transgenic OC. Transgenic mature OCs were larger, with actin rings and higher ERK, Akt, Rac1 and Rho activities than wild-type OCs. Inhibition of these proteins abolished the effects of DRG2 on formation of large OCs with actin rings, implying that DRG2 affects cytoskeleton reorganization in a Rac1/Rho/ERK/Akt-dependent manner. In summary, DRG2 is associated with survival and cytoskeleton organization of OC under influence of macrophage colony-stimulating factor, and its overexpression leads to elevated bone resorptive activity of OC, resulting in bone loss.


Assuntos
Remodelação Óssea/fisiologia , Reabsorção Óssea/etiologia , Proteínas de Ligação ao GTP/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais/fisiologia , Animais , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Fusão Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Proteínas de Ligação ao GTP/efeitos dos fármacos , Proteínas de Ligação ao GTP/genética , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Osteoclastos/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
8.
J Microbiol ; 61(7): 673-682, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37314676

RESUMO

Ulcerative colitis, a major form of inflammatory bowel disease (IBD) associated with chronic colonic inflammation, may be induced via overreactive innate and adaptive immune responses. Restoration of gut microbiota abundance and diversity is important to control the pathogenesis. Lactobacillus spp., well-known probiotics, ameliorate IBD symptoms via various mechanisms, including modulation of cytokine production, restoration of gut tight junction activity and normal mucosal thickness, and alterations in the gut microbiota. Here, we studied the effects of oral administration of Lactobacillus rhamnosus (L. rhamnosus) KBL2290 from the feces of a healthy Korean individual to mice with DSS-induced colitis. Compared to the dextran sulfate sodium (DSS) + phosphate-buffered saline control group, the DSS + L. rhamnosus KBL2290 group evidenced significant improvements in colitis symptoms, including restoration of body weight and colon length, and decreases in the disease activity and histological scores, particularly reduced levels of pro-inflammatory cytokines and an elevated level of anti-inflammatory interleukin-10. Lactobacillus rhamnosus KBL2290 modulated the levels of mRNAs encoding chemokines and markers of inflammation; increased regulatory T cell numbers; and restored tight junction activity in the mouse colon. The relative abundances of genera Akkermansia, Lactococcus, Bilophila, and Prevotella increased significantly, as did the levels of butyrate and propionate (the major short-chain fatty acids). Therefore, oral L. rhamnosus KBL2290 may be a useful novel probiotic.


Assuntos
Colite , Lacticaseibacillus rhamnosus , Probióticos , Animais , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colite/terapia , Colo/imunologia , Colo/microbiologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/terapia , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Biomarcadores/análise , Microbioma Gastrointestinal , Biodiversidade , Ácidos Graxos Voláteis/metabolismo , Administração Oral , Lactobacillaceae/classificação , Lactobacillaceae/fisiologia
9.
J Cell Physiol ; 227(4): 1619-27, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21678414

RESUMO

Monocyte chemoattractant protein-1 (MCP-1) is associated with various inflammatory diseases involving bone loss, and is expressed along with its receptor by bone marrow-derived macrophages (BMM), which are osteoclast (OC) precursors. To investigate the role of MCP-1 in bone remodeling, we compared MCP-1-knockout (KO) mice with wild-type (WT) mice. The absence of MCP-1 increased bone mass and lowered serum collagen type I fragments (CTX-1) and TRACP 5b, but had no significant effect on the N-terminal propeptide of type I procollagen, suggesting that OCs are primarily responsible for the bone phenotype observed in the absence of MCP-1. MCP-1 deficiency resulted in reduced numbers and activity of OCs in vitro. It also led to a reduced level of c-Fms and receptor activator of nuclear factor-κB receptor and impaired actin ring formation. Activation of ERK, Akt, Rac1, and Rho upon M-CSF stimulation was also reduced and our evidence suggests that the aberrant actin ring formation was partly due to reduced activation of these molecules. Our findings point to a role of osteoclast MCP-1 in regulating bone remodeling. The higher bone mass in the femurs of MCP-1-KO mice could be, at least in part, due to decreased osteoclastogenesis and bone resorption resulting from aberrant M-CSF signaling in OCs.


Assuntos
Actinas/metabolismo , Remodelação Óssea/fisiologia , Quimiocina CCL2/deficiência , Animais , Sequência de Bases , Remodelação Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/anatomia & histologia , Osso e Ossos/diagnóstico por imagem , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Primers do DNA/genética , Feminino , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Microtomografia por Raio-X
10.
Am J Physiol Endocrinol Metab ; 303(11): E1296-303, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949031

RESUMO

The aim of the present study was to evaluate the effect of fibrinogen on number and function of osteoclasts (OC) consequently resulting in bone loss. It was hypothesized that the enhanced level of released fibrinogen due to loss of ovarian function caused bone loss by acting on OCs. Bone loss was induced by ovariectomy (OVX) in mice and analyzed by micro-CT. The effect of fibrinogen on OCs was evaluated by tartrate-resistant acid phosphatase, annexin V, actin staining, pit formation observed on dentine slices, and Western blotting. Exogenous fibrinogen increased OC survival, actin ring formation, and bone resorption in vitro. The effect of fibrinogen was dependent on ß(3)-integrin, which is a marker for mature OCs. Fibrinogen induced the activation of transforming oncogene from Ak strain (Akt), Ras-related C3 botulinum toxin substrate 1 (Rac1), and Rho family of GTPase (Rho) and the degradation of the Bcl-2 interacting mediator of cell death (Bim) in a manner similar to macrophage colony-stimulating factor (M-CSF). OVX increased plasma fibrinogen and serum M-CSF together with elevated actin ring formation and bone loss. The increased fibrinogen level due to loss of ovarian function may contribute, at least partly, to bone loss through the enhanced number and activity of OCs.


Assuntos
Citoesqueleto de Actina/metabolismo , Reabsorção Óssea/metabolismo , Fibrinogênio/fisiologia , Osteoclastos/fisiologia , Osteoporose/metabolismo , Actinas/metabolismo , Análise de Variância , Animais , Células da Medula Óssea/fisiologia , Reabsorção Óssea/complicações , Reabsorção Óssea/diagnóstico por imagem , Diferenciação Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator Estimulador de Colônias de Macrófagos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/complicações , Ovariectomia , Pós-Menopausa/metabolismo , Receptores de Vitronectina/metabolismo , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Microtomografia por Raio-X
11.
Sci Rep ; 12(1): 9640, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688918

RESUMO

Inflammatory bowel disease (IBD) refers to disorders involving chronic inflammation of the gastrointestinal tract. Well-established treatments for IBD have not yet to be suggested. To address this gap, we investigated the effects of co-administration of Lactobacillus gasseri (L. gasseri) KBL697 and infliximab (IFX), the first approved tumor necrosis factor (TNF)-alpha inhibitor, on the dextran sodium sulfate-induced colitis mouse model. 2 × 109 colony-forming units/g of L. gasseri KBL697 were administered to seven-week-old female C57BL/6J mice daily by oral gavage. On day three, IFX (5 mg/kg) suspended in 1 × PBS (200 µL) was intravenously injected in the IFX-treated group and all mice were sacrificed on day nine. Co-administration of L. gasseri KBL697 and IFX improved colitis symptoms in mice, including body weight, disease activity index, colon length, and histology score. Additionally, pro-inflammatory cytokines, such as interferon-gamma, interleukin (IL)-2, IL-6, IL-17A, and TNF were significantly decreased, while IL-10, an anti-inflammatory cytokine, was increased. Expression levels of tight junction genes and CD4 + CD25 + Foxp3 + T regulatory cells in the mesenteric lymph nodes were synergistically upregulated with the combined treatment. Furthermore, co-administered mice displayed altered cecum microbial diversity and composition with increases in the genus Prevotella. Related changes in the predicted amino and nucleic acid metabolic pathways were also evident, along with increased acetate and butyrate level. Therefore, the synergistic effect of L. gasseri KBL697 and IFX co-administration is a possible method of prevention and treatment for IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Lactobacillus gasseri , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Feminino , Fatores Imunológicos/farmacologia , Doenças Inflamatórias Intestinais/patologia , Infliximab , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Nutr Food Res ; 66(22): e2101105, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36059191

RESUMO

SCOPE: Intestinal dysbiosis has been reported to play an important role in the pathogenesis of various diseases, including chronic kidney disease (CKD). Here, to evaluate whether probiotic supplements can have protective effects against kidney injury in an animal model of CKD is aimed. METHODS AND RESULTS: An animal model of CKD is established by feeding C57BL/6 mice a diet containing 0.2% adenine. These model mice are administered Lactobacillus acidophilus KBL409 daily for 4 weeks. Features of adenine-induce CKD (Ade-CKD) mice, such as prominent kidney fibrosis and higher levels of serum creatinine and albuminuria are improved by administration of KBL409. Ade-CKD mice also exhibit a disrupted intestinal barrier and elevate levels of TNF-α, IL-6, and 8-hydroxy-2'-deoxyguanosine. These changes are attenuated by KBL409. Administration of KBL409 significantly reduces macrophage infiltration and promotes a switch to the M2 macrophage phenotype and increasing regulatory T cells. Notably, the NLRP3 inflammasome pathway is activated in the kidneys of Ade-CKD and decreases by KBL409. In primary kidney tubular epithelial cells treated with p-cresyl sulfate, short-chain fatty acids significantly increase M2 macrophage polarization factors and decrease profibrotic markers. CONCLUSIONS: These results demonstrate that supplementation with the probiotic KBL409 has beneficial immunomodulating effects and protects against kidney injury.


Assuntos
Probióticos , Insuficiência Renal Crônica , Camundongos , Animais , Lactobacillus acidophilus , Camundongos Endogâmicos C57BL , Fibrose , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Probióticos/farmacologia , Rim/metabolismo , Modelos Animais de Doenças , Adenina/farmacologia , Adenina/metabolismo
13.
Food Funct ; 12(1): 340-350, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325946

RESUMO

Gut microbiota play a major role in host physiology and immunity. Inflammatory bowel diseases (IBDs), the important immune-related diseases, can occur through immune system malfunction originating due to dysregulation of the gut microbiota. The aim of this study was to investigate the capabilities and mechanisms of Lactobacillus acidophilus (L. acidophilus) KBL402 and KBL409 treatment in the alleviation of colitis using the in vivo dextran sodium sulfate (DSS)-induced colitis mice model. Various colitis symptoms of mice, including disease activity index score [4.55 ± 0.99 (P < 0.001) and 5.12 ± 0.94 (P < 0.001), respectively], colon length [6.18 ± 0.43 mm (P < 0.001) and 6.62 ± 0.47 mm (P < 0.001), respectively], and colon histological score [(5.33 ± 1.03 (P < 0.001) and 4.00 ± 0.89 (P < 0.01), respectively)], were significantly restored with L. acidophilus KBL402 or KBL409 administration (1 × 109 colony-forming units) for 8 days. Moreover, inflammatory cytokines, chemokines, and myeloperoxidase were downregulated in mice with L. acidophilus treatment. Upregulation of anti-inflammatory cytokine IL-10 or regulatory T cells were discovered with L. acidophilus KBL402 (12.90 ± 7.87 pg mL-1) (P < 0.05) or L. acidophilus KBL409 treatment (10.63 ± 2.70%) (P < 0.05), respectively. Expressions of inflammation-related micro-RNAs (miRs) were also significantly altered in mice with L. acidophilus. Finally, L. acidophilus treatment could restore the diversity of the gut microbiota. Mice with L. acidophilus KBL402 treatment showed a high relative abundance of the genus Akkermansia (0.022 ± 0.017) and Prevotella (0.010 ± 0.006) (P < 0.01). Butyrate and propionate, the major short-chain fatty acids, in the ceca of DSS + KBL402-treated mice were significantly higher than in that of the mice with DSS-induced colitis (0.03 ± 0.02 ng mg-1 and 0.03 ± 0.01 ng mg-1, respectively) (P < 0.05). Our study suggests that L. acidophilus KBL402 and KBL409 could be useful for the prevention or treatment of IBDs in various ways including the modulation of immune responses and miR expression, restoration of the gut microbiota, and production of metabolites.


Assuntos
Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus acidophilus , Probióticos/farmacologia , Animais , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
14.
Biochem Biophys Rep ; 23: 100788, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32715107

RESUMO

Macrophage metabolic pathways show changes in response to various external stimuli. Especially, increased lipopolysaccharide, an important bacterial component and Toll-like receptor 4 agonist, can induce activity in various macrophage metabolic pathways, including energy production and biosynthesis, as well as high immune responses due to increase in differentiated M1 macrophages. In this study, we confirmed that Lactobacillus paracasei (L. paracasei) KBL382, KBL384 and KBL385, isolated from the feces of healthy Koreans, can modulate various enzymes and membrane transporters related to glycolysis or macrophage polarization including hypoxia-inducible factor 1-alpha (HIF1A), inducible nitric oxide synthase (iNOS) and arginase in stimulated macrophages at the mRNA level, using the in vitro rodent bone-marrow-derived macrophage (BMDM) model. All L. paracasei exhibited significant down-regulatory effects on mRNAs for glycolysis-related enzymes, including lactate dehydrogenase A, solute carrier family 2 member 1, and triosephosphate isomerase. Moreover, L. paracasei treatment could lead to significant reductions in HIF1A or iNOS mRNA, and induced arginase mRNA in the BMDM model. Therefore, further extensive studies should be performed to support the application of L. paracasei, such as in probiotics or therapeutics, in controlling abnormal immune responses related to macrophage.

15.
Gut Microbes ; 12(1): 1-14, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33016202

RESUMO

Administration of probiotics has been linked to immune regulation and changes in gut microbiota composition, with effects on atopic dermatitis (AD). In this study, we investigated amelioration of the symptoms of AD using Lactobacillus paracasei KBL382 isolated from the feces of healthy Koreans. Mice with Dermatophagoides farinae extract (DFE)-induced AD were fed 1 × 109 CFU d-1 of L. paracasei KBL382 for 4 weeks. Oral administration of L. paracasei KBL382 significantly reduced AD-associated skin lesions, epidermal thickening, serum levels of immunoglobulin E, and immune cell infiltration. L. paracasei KBL382-treated mice showed decreased production of T helper (Th)1-, Th2-, and Th17-type cytokines, including thymic stromal lymphopoietin, thymus, and activation-regulated chemokine, and macrophage-derived chemokine, and increased production of the anti-inflammatory cytokine IL-10 and transforming growth factor-ß in skin tissue. Intake of L. paracasei KBL382 also increased the proportion of CD4+ CD25+ Foxp3+ regulatory T cells in mesenteric lymph nodes. In addition, administration of L. paracasei KBL382 dramatically changed the composition of gut microbiota in AD mice. Administration of KBL382 significantly ameliorates AD-like symptoms by regulating the immune response and altering the composition of gut microbiota.


Assuntos
Dermatite Atópica/terapia , Microbioma Gastrointestinal , Imunomodulação , Lacticaseibacillus paracasei , Probióticos , Animais , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Citocinas/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Eosinófilos/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Linfonodos/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Pele/imunologia , Pele/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Linfopoietina do Estroma do Timo
16.
Cell Host Microbe ; 27(1): 25-40.e6, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31866426

RESUMO

Although a link between the gut microbiota and alcohol-related liver diseases (ALDs) has previously been suggested, the causative effects of specific taxa and their functions have not been fully investigated to date. Here, we analyze the gut microbiota of 410 fecal samples from 212 Korean twins by using the Alcohol Use Disorders Identification Test (AUDIT) scales to adjust for host genetics. This analysis revealed a strong association between low AUDIT scores and the abundance of the butyrate-producing genus Roseburia. When Roseburia spp. are administered to ALD murine models, both hepatic steatosis and inflammation significantly improve regardless of bacterial viability. Specifically, the flagellin of R. intestinalis, possibly through Toll-like receptor 5 (TLR5) recognition, recovers gut barrier integrity through upregulation of the tight junction protein Occludin and helps to restore the gut microbiota through elevated expression of IL-22 and REG3γ. Our study demonstrates that Roseburia spp. improve the gut ecosystem and prevent leaky gut, leading to ameliorated ALDs.


Assuntos
Clostridiales/metabolismo , Fígado Gorduroso Alcoólico/terapia , Microbioma Gastrointestinal , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Transtornos Relacionados ao Uso de Álcool/patologia , Animais , Clostridiales/isolamento & purificação , Disbiose/microbiologia , Fígado Gorduroso Alcoólico/metabolismo , Fezes/microbiologia , Feminino , Flagelina/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ocludina/metabolismo
17.
Gut Microbes ; 10(6): 696-711, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939976

RESUMO

We evaluated immunometabolic functions of novel Lactobacillus fermentum strains (KBL374 and KBL375) isolated from feces of healthy Koreans. The levels of inflammatory cytokines, such as interleukin (IL)-2, interferon-γ, IL-4, IL-13, and IL-17A, were decreased, and that of the anti-inflammatory cytokine IL-10 was increased, in human peripheral blood mononuclear cells (PBMCs) treated with the L. fermentum KBL374 or KBL375 strain. When these strains were orally administered to mice with dextran sulfate sodium (DSS)-induced colitis, both L. fermentum KBL374 and KBL375 showed beneficial effects on body weight, disease activity index score, colon length, cecal weight, and histological scores. Furthermore, both L. fermentum KBL374 and KBL375 modulated the innate immune response by improving gut barrier function and reducing leukocyte infiltration. Consistent with the PBMC data, both L. fermentum KBL374- and KBL375-treated DSS mice demonstrated decreased Th1-, Th2-, and Th17-related cytokine levels and increased IL-10 in the colon compared with the DSS control mice. Administration of L. fermentum KBL374 or KBL375 to mice increased the CD4+CD25+Foxp3+Treg cell population in mesenteric lymph nodes. Additionally, L. fermentum KBL374 or KBL375 administration reshaped and increased the diversity of the gut microbiota. In particular, L. fermentum KBL375 increased the abundance of beneficial microorganisms, such as Lactobacillus spp. and Akkermansia spp. Both L. fermentum KBL374 and KBL375 may alleviate inflammatory diseases, such as inflammatory bowel disease, in the gut by regulating immune responses and altering the composition of gut microbiota.


Assuntos
Colite/imunologia , Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Limosilactobacillus fermentum/fisiologia , Probióticos/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Colite/dietoterapia , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Citocinas/imunologia , Sulfato de Dextrana/toxicidade , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Imunomodulação , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Linfócitos T Reguladores/imunologia , Proteínas de Junções Íntimas/metabolismo
18.
Front Mol Biosci ; 6: 92, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31612141

RESUMO

Gut microbiota play an important role in immune responses and energy metabolism. In this study, we evaluated whether administration of Lactobacillus fermentum (L. fermentum) KBL375 isolated from healthy Korean feces improves the atopic dermatitis using the house dust mite (Dermatophagoides farinae)-induced atopic dermatitis (AD) mouse model. Administration of L. fermentum KBL375 significantly decreased dermatitis score, ear and dorsal thickness, and serum immunoglobulin E level in AD-induced mice. Significant reductions in mast cells and eosinophils were discovered in skin tissues from L. fermentum KBL375-treated mice. T helper 2 cell-related cytokines interleukin (IL)-4, IL-5, IL-13, and IL-31 significantly decreased, and anti-inflammatory cytokine IL-10 or transforming growth factor-ß increased in skin tissues from L. fermentum KBL375-treated mice. In addition to phenotypic changes in skin tissues, L. fermentum KBL375 treatment induced an increase in the CD4+CD25+Foxp3+ cell population in mesenteric lymph nodes. Taxonomic and functional analyses of gut microbiota showed significantly higher cecum bacterial diversities and abundances including genus Bilophila, Dorea, and Dehalobacterium in L. fermentum KBL375-treated mice. Metabolic analysis of the cecum also showed significant changes in the levels of various amino acids including methionine, phenylalanine, serine, and tyrosine, as well as short chain fatty acids such as acetate, butyrate, and propionate in AD-induced mice due to L. fermentum KBL375 treatment. These altered metabolites in AD-induced mice returned to the levels similar to those in control mice when treated with L. fermentum KBL375. Therefore, L. fermentum KBL375 could be useful for AD treatment by modulating the immune system and inducing various metabolites.

19.
Biochem Biophys Res Commun ; 367(2): 277-83, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18155158

RESUMO

TR2 (TNFR-related 2, HVEM, or TNFRSF-14), a member of the TNFR family, is involved in a number of immune responses. While TR2 is expressed on the surface of T cells during the resting state, little is known regarding how expression of the TR2 gene is regulated. To understand the mechanisms regulating the expression of TR2 in T cells, we analyzed the 5' flanking region of TR2. We identified an important region for the activity of the TR2 promoter using site directed mutagenesis. Using EMSA analysis, we found that IRF-2 was bound to the promoter region of the TR2 gene during the resting state of EL-4 T cells. Transfection of IRF-2 expression plasmid and of dominant negative IRF-2 mutant further confirmed our results. Together, these data demonstrate that IRF-2 is involved in the regulation of TR2 expression in EL-4 T cells.


Assuntos
Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular , Fator Regulador 2 de Interferon/genética , Camundongos , Membro 14 de Receptores do Fator de Necrose Tumoral/genética
20.
Mol Cell Endocrinol ; 409: 11-20, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-25841764

RESUMO

Heme oxygenase-1 (HO-1) has long been considered to be an endogenous antioxidant. However, the role of HO-1 is highly controversial in developing metabolic diseases. We hypothesized that HO-1 plays a role in maintaining bone mass by alleviating a redox imbalance. We investigated its role in bone remodeling. The absence of HO-1 in mice led to decreased bone mass with elevated activity and number of OCs, as well as higher serum levels of reactive oxygen species (ROS). HO-1, which is constitutively expressed at a high level in osteoclast (OC) precursors, was down-regulated during OC differentiation. HO-1 deficiency in bone marrow macrophages (BMM) in vitro resulted in increased numbers and activity of OCs due to enhanced receptor activator of nuclear factor-κB ligand (RANKL) signaling. This was associated with increased activation of nuclear factor-κB and of nuclear factor of activated T-cells, cytoplasmic 1 along with elevated levels of intracellular calcium and ROS. Decreased bone mass in the absence of HO-1 appears to be mainly due to increased osteoclastogenesis and bone resorption resulting from elevated RANKL signaling in OCs. Our data highlight the potential role of HO-1 in maintaining bone mass by negatively regulating OCs.


Assuntos
Densidade Óssea , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/fisiologia , Oxirredução , Animais , Remodelação Óssea , Reabsorção Óssea , Diferenciação Celular , Células Cultivadas , Regulação da Expressão Gênica , Heme Oxigenase-1/deficiência , Macrófagos/fisiologia , Proteínas de Membrana/deficiência , Camundongos , Ligante RANK/genética , Ligante RANK/metabolismo , Espécies Reativas de Oxigênio/sangue , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA